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ABSTRACT

The present paper introduces a novel online asset allocation strategy

which accounts for the sensitivity of Markowitz-inspired portfolios

to low-quality estimates of the mean and the correlation matrix of

stock returns. The proposed methodology builds upon the total least-

squares (TLS) criterion regularized with sparsity attributes, and the

ability to incorporate additional convex constraints on the portfolio

vector. To solve such an optimization task, the present paper draws

from the rich family of splitting algorithms to construct a novel on-

line splitting algorithm with computational complexity that scales

linearly with the number of unknowns. Real-world financial data are

utilized to demonstrate the potential of the proposed technique.

Index Terms— Markowitz portfolio, total least-squares, spar-

sity, splitting algorithms, proximal mapping, projection.

1. INTRODUCTION

Risk-aware asset allocation has been placed at the epicenter of fi-

nancial engineering since the landmark paper of H. Markowitz [1],

which basically advocates that an investor cannot achieve stock re-

turns exceeding the risk-free scenario without carrying some risk.

If r denotes the L × 1 random vector of stock returns, and w

the L × 1 portfolio or asset allocation vector, then risk in [1] is

defined as the variance of the portfolio return r⊤w, where ⊤ stands

for transposition. Hence, if ρ := E[r] is the expected return, the

mean-variance framework [1] is defined as

min
w∈RL

E
[(

r
⊤
w − η

)2]

s.t. w
⊤
ρ = η, w

⊤
1L = 1,

(1)

where η is the expected portfolio return, and 1L the L× 1 vector of

ones, introduced in order to fix the total capital equal to a constant

(here 1). Task (1) is equivalent to minimizing over w the w⊤
Σw

under the constraints of (1), where Σ := E[rr⊤] stands for the cor-
relation matrix of the stock returns.

Extensive experimentation has showed that many Markowitz-

inspired portfolio construction algorithms cannot markedly outper-

form the naive asset allocation strategy ofwnaive := 1L/L [2,3]. The

reason behind this is attributed to deteriorating effects caused by in-

accuracies in sample estimates of ρ andΣ [2]. Moreover, the mean-

variance strategy [1] appears to be oversensitive: small changes in

returns or correlations can effect dramatic changes in the output of

the optimization procedure [3]. Robust optimization methodologies

based onmin-max and second-order cone arguments have also been

considered to cope with the said limitations [4]. On the other hand,

[3] has demonstrated that regularizing the mean-variance task using

the (weighted) ℓ1-norm of w can yield stable asset allocation solu-

tions that outperform the naive diversification strategy. Once the data

are gathered, [3] relies on the linearly constrained least angle regres-

sion (LARS) scheme [5] to compute the “optimal” portfolio vector,

under the expected return and fixed capital constraints.

This study follows the successful (weighted) ℓ1-norm regular-

ization approach of [3], but in a novel online learning context. This

is the case where an abundance of data flows into a “learning ma-

chine”, so that there is a pressing need for sequential optimization

which incorporates every newly arrived datum in a computation-

ally inexpensive and time-efficient way. This is in contrast to the

batch approach of [3]; there, LARS starts from scratch every time

a new datum enters the system. Such a batch setting does not fit

the needs of modern asset allocation. Indeed, most of the estab-

lished exchanges, including NYSE, Nasdaq, and the Tokyo Stock

Exchange, have nowadays fully or partially adopted electronic order-

driven platforms, which process large amounts of bid and ask quotes

in very short time intervals: the execution of market orders has

dropped to less than 1ms in 2010, and the frequency of quotes can

reach 105 times a day [6].

In this online-learning context, the present paper introduces a

novel approach to address the limitations of Markowitz-based meth-

ods, caused by errors in the estimates of (ρ,Σ). Regarding estima-

tion of Σ, and motivated by [7, 8], a total least-squares (TLS) ap-

proach is followed to model explicitly inaccuracies in the measure-

ments of the stock returns, and allow for an optimization technique

that accounts for perturbations in Σ. As far as ρ is concerned, the

linear constraint on the expected return is relaxed towards a closed

convex set, which is reminiscent of the celebrated support vector re-

gression (SVR) formalism [9]; namely, a closed hyperslab (see Sec-

tion 3.1). Besides the standard constraints on the mean-variance set-

ting, the novel framework can accommodate any other closed convex

constraint on the portfolio vectorw.

To solve the resultant ℓ1-norm regularized, multi-constrained,

online minimization task, a TLS approach is developed along with

an alternating optimization technique, which draws from the rich

family of splitting algorithms [10–13]. This yields an online risk-

aware algorithmwith a computational complexity that scales linearly

in the number of unknowns, i.e., it is of orderO(L). The potential of
the proposed methodology is demonstrated through numerical tests,

which suggest that the novel online learning technique outperforms

the naive asset allocation benchmark on a set of real-world financial

data [14].

1.1. Related work

The classical mean-variance framework (1) has been equipped with

sparsity-promoting (weighted) ℓ1-norm regularization in [3]. Every
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time a new datum enters the system, LARS is employed to compute

the asset allocation. The sparsity-aware TLS approach was intro-

duced in [8]. There, in order to solve a sub-task of the alternating

minimization strategy, the celebrated LASSO [15] was utilized. Mo-

tivated by [8], another batch technique can be found in [16], where a

matching pursuit [17] methodology is adopted instead of the LASSO

one. The principal effort on online TLS has been devoted, mainly, to

its fast and efficient implementations [18–20]. To combat the limita-

tions of the Markowitz-inspired portfolios, regarding the sensitivity

on the estimation of Σ, random matrix theory has been utilized in

[21] in order to produce reliable estimates forΣ.

2. PROBLEM STATEMENT

Let N, N∗, and R denote the set of all non-negative integers, positive

integers, and real numbers, respectively. Given integers j1, j2, with
j1 ≤ j2, define also j1, j2 := {j1, j1 + 1, . . . , j2}.

Considering first a fixed time instant n ∈ N, the mean-

variance framework (1) assumes the model r⊤
n w = η + vn,

where the zero-mean noise vn captures unmodeled errors. Tak-

ing this model a step forward, for a given N∗ ∋ q < L, the matrix

Rn := [rn, rn−1, . . . , rn−q+1] ∈ R
L×q collects the q most re-

cent returns. This formulation of the regression matrix follows the

affine projection algorithm (APA) [22, 23] rationale. With vn denot-

ing the corresponding noise vector, the previous model reduces to

R⊤
nw = η1q + vn, where 1q is the q × 1 vector of all ones.

Motivated by the discussion in Section 1 on the deteriorating

effects of erroneous Σ estimates, consider broadening the previous

model to account for errors in Σ as in (Rn +E)⊤w = η1q + vn,

for E ∈ R
L×q . The asset allocation task, per time instant n, now

becomes

min
(w,E)∈

R
L×R

L×q

1

2
‖(Rn +E)⊤w − ηn1q‖

2 +

L
∑

i=1

si|wi|+
λE

2
‖E‖F

2

s.t.

{

w
⊤
1L = 1, |w⊤

ρ̂n − ηn| ≤ ǫ,

w
⊤
h ≥ c, etc,

(2)

where it is worth stressing that ηn is time-varying. The λE is a user-

defined positive parameter, and ‖·‖F stands for the Frobenius norm

of a matrix. The weighted ℓ1-norm regularization term is motivated

by [3], and the positive coefficient si is used to weigh the transac-

tion cost, whenever an investor places capital wi for the i-th asset,

∀i ∈ 1, L. The ǫ > 0 enabled constraint is introduced here in order

to accommodate the possibly erroneous sample estimates ρ̂n of ρ.

Here, the sample estimate ρ̂n is defined as

ρ̂n :=
1

M

n
∑

m=n−M+1

rm, (3)

where M ∈ N∗. For c > 0, the inequality w⊤h ≥ c is inter-

preted as a tax-related constraint; for example, if one defines h :=
[1, 1, 0, . . . , 0]⊤, where the 1s identify the position of charity-related
stocks, the investment of a total capital w⊤h ≥ c could trigger tax

deductions.

3. SOLVING FOR ONLINE TLS PORTFOLIOS

3.1. Preliminaries

First, a few concepts are needed for the rest of the discussion.

Definition 1 (Hyperplane, closed hyperslab, and projection). Given

a nonempty, closed, convex subset C of RL, the (metric) projection

mapping onto C is defined as the operator PC which associates to a

w ∈ R
L the (unique) point ofC that solves the following minimiza-

tion task: PC(w) := arg minu∈C‖w−u‖. Define also the (metric)
distance function to C as the function d(w, C) := ‖w − PC(w)‖,
∀w ∈ R

L. Clearly, C = arg minu∈RL d(u, C).
A few examples of closed convex sets are in order. Given a

nonzero normal vector x ∈ R
L, and an α ∈ R, a hyperplane is

defined as Π := {w ∈ R
L : x⊤w = α}. For allw ∈ R,

PΠ(w) = w +
α− x⊤w

‖x‖2
x. (4)

Given also an ǫ > 0, a closed hyperslab is defined as S := {w ∈
R

L : |x⊤w − α| ≤ ǫ}. For allw ∈ R,

PS(w) =











w + α+ǫ−x
⊤
w

‖x‖2
x, ifw⊤x− α > ǫ,

w + α−ǫ−x
⊤
w

‖x‖2
x, ifw⊤x− α < −ǫ,

w, otherwise.

(5)

The previous functional analytic tools have already shown their

rich potential in online learning tasks [24–26]. Next is a concept that

plays a key role in characterizing solutions of minimization tasks.

Definition 2 (Fixed point set). Given a mapping T : RL → R
L, its

fixed point set is defined as the set Fix(T ) := {u ∈ R
L : T (u) =

u}. For example, in the case of a closed convex set C , it can be

readily verified that Fix(PC) = C .

The constraints in (2) are closed convex sets. More specifically,

C0 := {w ∈ R
L : w⊤

1L = 1} is a hyperplane, and C1 := {w ∈
R

L : |w⊤ρ̂n − ηn| ≤ ǫ} is a closed hyperslab. Furthermore, the set

{w ∈ R
L : w⊤h ≥ c} is also a closed convex set; namely, a closed

halfspace [13]. Due to space limitations, this study is not meant to be

exhaustive. For this reason, it is generally assumed thatw satisfies a

finite number of closed convex constraints, {Ck}
K
k=0, K ∈ N∗; that

is,w ∈
⋂K

k=0 Ck.

However, there is no guarantee that the user-defined constraints

{Ck}
K
k=0 are consistent, i.e.,

⋂K

k=0 Ck 6= ∅. To overcome inconsis-

tencies, and thus ensure feasibility, (2) is replaced by

min
(w,E)∈

C0×R
L×q

Θn(w,E) := min
(w,E)∈

C0×R
L×q

1

2
‖(Rn +E)⊤w − ηn1q‖

2

+
1

2

K
∑

k=1

ξkd
2(w, Ck) +

L
∑

i=1

si|wi|+
λE

2
‖E‖F

2, (6)

where ξk ∈ R is a user-defined positive coefficient, which controls

the contribution of the constraint Ck to the previous loss function,

∀k ∈ 1,K. Notice that C0 is kept implicit as a hard constraint. This

is due to the requirement that the total available capital has to stay

fixed to the value of 1.
The loss function Θn in (6) is non-convex due to the product

between the variablesw andE. However, if one ofw orE is fixed,

Θn becomes convex with respect to the other variable. This observa-

tion will be used in the sequel to devise an alternating optimization

strategy: first, givenE, one solves forw, and after a value forw has

been obtained, minimization is carried with respect toE.
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3.2. Solving forw

Supposing E is fixed, define Xn := [xn1, . . . ,xnq] := Rn + E,

and verify that for xni 6= 0, the least-squares term in (6) can be

written as

1

2
‖X⊤

n w − ηn1q‖
2 =

q
∑

i=1

1

2
‖xni‖

2

(

x⊤
niw − ηn

)2

‖xni‖2

=

q
∑

i=1

1

2
‖xni‖

2d2(w,Πi),

where Πi denotes the hyperplane: Πi := {u ∈ R
L : x⊤

niu = ηn},
i ∈ 1, q. Hence, (6) can be recast as

min
w∈C0

1

2

I
∑

i=1

ξid
2(w, Ci) +

L
∑

i=1

si|wi|, (7)

where the closed convex sets have been re-ordered to obtain compact

expressions, i.e., I := q + K, Ci := Πi, ∀i ∈ 1, q, while for i ∈
q + 1, I , the set Ci is Ci−q , defined in Section 3.1. Moreover, ξi :=
‖xni‖

2, ∀i ∈ 1, q, and {ξi}
I
i=q+1 coincide with the {ξi−q}

I
i=q+1 of

Section 3.1.

Formulation (7) can be viewed as a special case of the follow-

ing optimization task: Given a set of convex, differentiable func-

tions {f
(n)
i }Ii=1, whose gradients {∇f

(n)
i }Ii=1 are Lipschitz con-

tinuous [13], along with a set of convex, subdifferentiable func-

tions {gj}
J
j=1, and a set of user-defined positive weights {ξi}

I
i=1,

{λj}
J
j=1, then (7) can be expressed as

min
w∈RL

ιC0
(w) +

I
∑

i=1

ξif
(n)
i (w) +

J
∑

j=1

λjgj(w), (8)

where ιC0
(·) stands for the indicator function of C0, i.e., the convex

function defined as ιC0
(w) := 0, if w ∈ C0, and ιC0

(w) := +∞,

if w /∈ C0. The time index in f
(n)
i has been explicitly inserted to

stress that this is a time-varying function. The task (7) is indeed a

special case of (8); this can be readily verified if f
(n)
i := 1

2
d2(·, Ci),

∀i ∈ 1, I , and J := 1, with g1(w) :=
∑L

i=1 si|wi|, ∀w ∈ R
L,

and λ1 = 1. Recall also that the gradient of 1
2
d2(·, Ci) is Lipschitz

continuous [13]. It is worth noticing here that the generality of (8)

invites extensions of the TLS objective functions in (6) to costs like

the ε-insensitive loss, and other functions used extensively in robust

statistics [27].

A means of solving (8) could be a time-varying generalization

of the celebrated Projected Subgradient Method (PSM) [28–30],

due to the dependence of the task on n, and the subdifferentia-

bility of {gj}
J
j=1. However, in order to establish convergence, a

careful choice of the parameters, which control the step along the

descent direction, should be made. Usually, they need to be squared

summable, but with an unbounded sum. In general, such a strategy

on the step-parameters hinders the overall speed of convergence

[31], which is undesirable in real-time applications, as the present

online asset allocation task. For this reason, splitting algorithms

[10, 12, 13] are utilized here. By this framework, instead of viewing

the loss function in (8) as a whole object, effort is split into mini-

mizing, in parallel or concurrently, each of the constituent functions

comprising the whole loss. For example, the task of minimizing ιC0

is straightforward; by the definition of ιC0
, the projection mapping

PC0
accomplishes this task. For f

(n)
i := 1

2
d2(·, Ci), the projec-

tion mappings PCi
also minimize f

(n)
i in a single step. In order

to achieve this also for the subdifferentiable functions {gj}
J
j=1, a

regularization approach will be adopted as detailed next.

Given a set of positive numbers {γj}
J
j=1, a regularized version

of (8) is

min
w∈RL

ιC0
(w) +

I
∑

i=1

ξif
(n)
i (w) +

J
∑

j=1

λjeγjgj (w), (9)

where eγjgj stands for theMoreau envelope of γjgj .

Definition 3 (Moreau envelopes and proximal mappings [13, 32,

33]). Given a positive number γ, and a convex function g : RL →
R, theMoreau envelope of γg [32] is defined as

eγg(w) := min
u∈RL

γg(u) +
1

2
‖w − u‖2. (10)

For example, it is well-known [34] that e|·|, where | · | is the absolute
function, is a scaled version of the celebrated Huber function, used

extensively in robust statistics [27].

Proximal mapping is the one associating everyw to the (unique)

minimizer of (10), i.e., ∀w ∈ R
L,

Proxγg(w) := arg min
u∈RL

γg(u) +
1

2
‖w − u‖2.

Further, Fix(Proxγg) = arg minw∈RL g(w), for any γ > 0 [13].

The following fact suggests that the regularization offered by (9)

to the original task (8) is meaningful.

Fact 1 ([33]). The minimizers of gj coincide with those of eγjgj ,

i.e., arg minw∈RL gj(w) = arg minw∈RL eγjgj (w), ∀γj > 0.

The next fact suggests that the proximal mapping with respect

to the weighted ℓ1-norm yields a well-known form.

Fact 2 ([13]). Given the function g(w) :=
∑L

i=1 si|wi|, w ∈ R
L,

and a positive coefficient γ > 0, then, if y := Proxγg(w), for some

w ∈ R
L, the i-th component of y is given by

yi =











wi − γsi, if wi > γsi,

wi + γsi, if wi < −γsi,

0, if |wi| ≤ γsi,

∀i ∈ 1, L,

i.e., Proxγg is nothing but the soft-thresholding operator [35].

Proposition 1 (Characterization of the minimizers). Define the con-

vex function ϕn := ιC0
+

∑I

i=1 ξif
(n)
i +

∑J

j=1 λjeγjgj . Then for

any µ ∈ (0, 2), it holds that

arg min
w∈RL

ϕn(w) = Fix
(

PC0

(

IL + µ(Tn − IL)
))

,

where IL is theL×L identity matrix, and Tn : RL → R
L is defined

as

Tn :=
I

∑

i=1

θiPCi
+

J
∑

j=1

θj+I Proxγjgj , (11)

and the coefficients {θi}
I+J
i=1 are given by

θi :=

{

βξi, if i ∈ 1, I,

β λi

γi
, if i ∈ I + 1, I + J,

(12)

with β :=
(
∑I

i=1 ξi +
∑J

j=1
λi

γi

)−1
. Notice that the weights

{θi}
I+J
i=1 are constructed in such a way that

∑I+J

i=1 θi = 1.
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Fig. 1. The normalized Sharpe ratio of Algorithm 1, with respect to

the naive Sharpe ratio, versus the daily time-horizon. Although the

two employed data sets extend over different time periods, they have

been aligned to a common starting point for ease in visualization.

Proof. Omitted due to space limitations.

Notice that each term of Tn minimizes a corresponding convex

function in ϕ− ιC0
. These combined in parallel minimizing efforts

constitute Tn. Based on the generic Krasnosel’skiı̆-Mann recursion

[36,37], it can be shown that an infinitely often repetition of the map-

ping PC0

(

IL + µ(Tn − IL)
)

converges to a minimizer of ϕn [11].

This is welcome in a batch setting. However, in an online scenario,

such a repetition is unrealistic per time instant n. For this reason,

in this study, Tn is applied once per n in order to update the vector

w. Note that this is the first time that the mapping Tn is applied

to an online setting, and thus to the online TLS framework. Due

to space limitations, performance analysis, which was developed for

the general model of (9), will be reported in a future work.

3.3. Solving forE

Givenw, the minimization task with respect toE becomes

min
E∈RL×q

1

2
‖(Rn +E)⊤w − ηn1q‖

2 +
λE

2
‖E‖F

2.

Upon differentiating with respect toE, the minimizer becomes

E =
[ ηn − r⊤

n1w

λE + ‖w‖2
, . . . ,

ηn − r⊤
nqw

λE + ‖w‖2

]

⊗w, (13)

where⊗ stands for the Kronecker product. Algorithm 1 summarizes

the basic steps of the previous process.

Algorithm 1 Online total least-squares by parallel splitting

1: for n = 1, 2, . . . , do
2: Available are the current estimates (wn,En), the matrixRn,

the sample mean ρ̂n, and the portfolio return ηn.
3: Compute the weights {θi}

I+J
i=1 as in (12).

4: Calculate the projectionmappings {PCi
}Ii=1 as in (4) and (5).

5: Calculate the proximal mappings {Proxγjgj}
J
j=1 as in

Fact 2.

6: Generate the mapping Tn in (11), and compute Tn(wn).
7: Define wn+1 := PC0

(

wn + µ
(

T (wn) − wn

))

, where C0

is the hyperplane that keeps the total capital equal to 1, and
PC0

is computed as in (4).

8: Having available wn+1, find En+1 by (13).

Ensure: The updated estimates (wn+1,En+1).
9: end for

It can be readily verified that the computational complexity of

Algorithm 1 scales linearly in the number of unknowns. Specifically,

it is of order O(qL).

Proposition 2. Regarding Θn in (6), it holds that ∀n ∈ N,

Θn(wn+1,En+1) ≤ Θn(wn+1,En) ≤ Θn(wn,En).

Proof. Due to space limitations, the proof of this claim, as well as

the full discussion on the analysis of Algorithm 1 are deferred to the

journal version of this paper.

4. NUMERICAL TESTS

Algorithm 1 has been validated on a well-known set of real-world

data, taken from the Fama-French (FF) data library [14]. Specif-

ically, tests are carried with ’48 Industry Portfolios daily.txt’ and
’100 Portfolios 10x10 Daily.txt’. The first data set is a collection

of daily returns for the period of 07/01/1969–09/28/2012, where

L = 48. The second data set refers to a collection of daily returns

for the period of 07/03/1978–06/30/1999, where L = 100.
For simplicity, Algorithm 1 has been employed only for the case

where the constraints regarding the fixed capital amount, and the

closed hyperslab are present. Validation follows the lines of [3].

Specifically, ηn is calculated as a moving average process, with uni-

form weights, onto the naive portfolio returns over the most recent

historic data, which extend over a period of a year. The same time

period is used also for the value of M in (3). Moreover, every time

instant n, every portfolio vector wn is tested against data that were

not part of the training phase, meaning data that lie ahead of the

time instant n. To obtain valid statistical results, portfolio returns

were obtained over a future time span of 5 years. Given those port-

folio returns, the mean and standard deviation were found so that

their ratio formed the so called Sharpe ratio. Clearly, the larger the

Sharpe ratio, the less risk for a given portfolio vector. The vertical

axis of Fig. 1 depicts the Sharpe ratio of the proposed methodology,

normalized with respect to the naive asset allocation strategy, where

wnaive := 1L/L, which according to the discussion in Section 1 is

the benchmark [2,3].

Regarding the employed parameters for FF481, µ = 1, ǫ = 0.5,
γ = 10−3, λE = 1, and si = 10−1, ∀i ∈ 1, L. For FF482,
only the value of sis are changed to 1, in order to impose a more

intense ℓ1-norm regularization on the total cost. As it can be seen

from Fig. 1, this leads to more conservative estimates. For FF1001,
µ = 1, ǫ = 0.5, γ = 10−3, λE = 1, and si = 10−2, ∀i ∈ 1, L.
Similar to the previous data set, a more conservative approach was

followed for FF1002, by changing only the value of sis to 10
−1.

Fig. 1 speaks for the potential of the proposed methodology,

since for almost the entire time period, and for both utilized data sets,

Algorithm 1 outperforms the naive asset allocation strategy. The

starting point for Algorithm 1 was set equal to wnaive. However, Al-

gorithm 1 demonstrated similar behavior for any starting point used.

More experimental results will be reported in the journal version of

this paper.
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