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ABSTRACT

Combinations of adaptive filters have attracted attention as a
simple way to improve filter performance, avoiding the compromise
between fast adaptation and low excess mean-square error. However,
the computational cost of the combined scheme is higher than that of
a single filter, since two or more filters must be run in parallel. In this
paper, we propose a new approach for reducing the computational
cost of combinations of adaptive filters in custom and semi-custom
hardware implementations. In the proposed scheme, the fast filter
is adapted as usual, but instead of updating the slow filter, we adapt
the difference between the slow and fast filters. We show that the
coefficients of the difference filter have a lower dynamic range com-
pared to the slow filter, and therefore can be updated using a smaller
number of bits. The wordlength used for the difference filter can be
chosen to make the performance of this low-cost scheme similar to
that of an infinite-precision implementation.

Index Terms— Adaptive filters, convex combination, low-cost
implementation.

1. INTRODUCTION

Cooperative estimation strategies have been applied to improve the
performance of adaptive filters in several applications [1–10]. In
particular, convex combinations of adaptive filters have proved to be
a reliable and robust way of dealing with the problem of parameter
adjustment, since they achieve performance close to that of the best
filter in the combination, even taking into consideration the on-line
estimation of the combination parameter [1, 11, 12].

One drawback of these schemes, however, is the increased com-
putational complexity — since two or more filters must be run in
parallel, in most schemes the computational complexity is roughly
double that of a single filter. Some attempts to reduce this prob-
lem have focused in using filters of different lengths [13], or using
variable-length filters [2].

In this paper we propose a different approach for reducing the
complexity of convex combinations of adaptive filters in custom or
semi-custom hardware implementations, such as field-programmable
gate arrays (FPGAs). We consider the case in which the combination
is used to avoid the compromise between fast adaptation and low ex-
cess mean-square error, by combining a fast with a slow filter [1].
The main idea is to adapt the fast filter as usual, but instead of di-
rectly adapting the slow filter, to estimate the difference between the
slow and fast filters. Since the dynamical range for the coefficients
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Fig. 1. Convex combination of two transversal adaptive filters.

in the difference filter will usually be smaller than the dynamic range
for the original filters, its coefficients can be encoded with a smaller
number of bits. Taking advantage of this reduced wordlength, sev-
eral arithmetic operations can be implemented at a smaller cost. We
also derive an expression relating the steady-state performance of
the resulting algorithm to the number of bits used to represent the
difference filter.

This paper is organized as follows. In the next section, we re-
view convex combinations of a fast and a slow adaptive filter. Next,
we review the complexity of fixed-point arithmetic operations as a
function of the number of bits allocated to each variable. Following
this, we re-derive the convex combination scheme in terms of the
fast filter and a difference filter, and show how the difference filter
can be encoded using lower-precision variables.

2. CONVEX COMBINATION OF TWO LMS FILTERS

For simplicity of presentation, in this paper we consider the convex
combination of two real-valued least-mean squares (LMS) filters, but
the method can be extended to other algorithms or combinations as
well. Consider the case shown in Figure 1, of two independent LMS
filters running in parallel with the same inputs and update equations
[14, 15]

wi(n+ 1) = wi(n) + µiei(n)x(n), i = 1, 2, (1)

where µ1 > µ2 are the step-sizes, ei(n) = d(n) − w
T
i (n)x(n)

is the error, (·)T denotes transposition, d(n) is the common scalar
desired sequence, and x(n) = [ x(n) x(n−1) ... x(n−M+1) ]T is the
common regressor vector. In the convex combination scheme, the
overall output is given by

y(n) = λ(n)y1(n) + [1− λ(n)] y2(n), (2)
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where yi(n) = w
T
i (n)x(n) are the component filter outputs, the

overall error is e(n) = d(n)−y(n), and 0 ≤ λ(n) ≤ 1 is the mixing
parameter, which is updated through an auxiliary variable a(n) as

follows [16]. Define the sigmoid function sgm(a)
∆
=

[

1 + e−a
]−1

λ(n) =
sgm[a(n)]− sgm[−a+]

sgm[a+]− sgm[a−]
, (3)

a(n+ 1) = a(n) +
µae(n)

p(n) + ǫ
[y1(n)− y2(n)]

∂λ(n)

∂a(n)
, (4)

∂λ(n)

∂a(n)
=

sgm[a(n)]
{

1− sgm[a(n)]
}

sgm[a+]− sgm[a−]
, (5)

p(n+ 1) = ηp(n) + (1− η) [y1(n)− y2(n)]
2 , (6)

where p(n) is an estimate of the power of y1(n) − y2(n), used to
normalize the adaptation of a(n) [12, 17], 0 ≪ η < 1 is the forget-
ting factor, and µa is the step-size. The definition of λ(n) as in (3),
proposed in [16], is a simple way to avoid the update of a(n) freez-
ing when λ(n) gets close to 0 or 1, due to the zeros in ∂λ(n)/∂a(n).
The value of a+ = −a− is usually chosen to be 4.

When implemented as in (1)–(6), the combination requires 6
multiplications, 7 additions and 1 division for the evaluation of (2),
(4), (6), as well as two searches in lookup-tables (LUTs) for (3) and
(5), plus twice the number of operations required for each compo-
nent filter. In the case of LMS component filters, this amounts to
2M + 1 multiplications and 2M additions for each filter. The to-
tal number of operations in the case of LMS component filters is
thus 4M + 8 multiplications, 4M + 7 additions, 1 division and two
lookup-table searches per iteration. Our goal in this paper is to re-
duce this complexity, taking advantage of finite-precision properties
of actual implementations of the method. We begin by reviewing,
in the next section, the computational cost of fixed-point arithmetic
operations, as a function of the wordlength of the inputs.

3. COMPUTATIONAL COST OF FIXED-POINT
OPERATIONS

Consider first the case of addition of a variable u, represented in
fixed-point using Bu bits, to a variable v, represented using Bv bits.
The exact cost will of course depend on all the details of the hard-
ware implementation [18] — we consider here the most general fea-
tures and, for ease of exposition, only positive numbers when com-
paring the complexities of addition and multiplication. The com-
plexity in the case of negative numbers is similar. Let then u be
represented in fixed-point by a binary word bu1 b

u
2 . . . buBu

(in gen-
eral, there would be an extra bit for the sign), and similarly for v,
such that

u =

Bu
∑

i=1

bui 2
−ku−i, v =

Bv
∑

i=1

bvi 2
−kv−i,

where ku and kv are fixed exponents that may differ for u and v.
Consider first the operation u+v, for two positive numbers with

Bu = Bv and ku = kv (as in a fixed-point DSP), each pair of bits
must be added, taking the carries into account. Let us denote the
complexity of carrying on this operation as A(Bu).

Consider now the case of different wordlengths, for example,
Bv ≤ Bu and ku = 0, and 0 ≤ kv ≤ Bu − Bv . If dedicated
hardware is used to compute u+v, the two variables must be aligned
as in Figure 2. Variable v must be completed with zeros, as shown in
the figure, before the operations are performed. However, because of

XXXXXX
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Fig. 2. Addition of two fixed-point numbers with different word
lengths. In this example, Bu = 8, ku = 0, Bv = 4, kv = 2. X
denotes undetermined values in the result.

the carries, the final complexity for computing u+ v will in general
be comparable to A(Bu).

The situation is different for multiplications. Consider the mul-
tiplication of u and v, defined as before, as shown in Figure 31. The
final result is the addition of Bv shifted versions of u. The result
will have Bu + Bv bits, and the complexity will be of the order of
M(Bu, Bv) = (Bv − 1)A(Bu +Bv).
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Fig. 3. Multiplication of two fixed-point numbers with different
wordlengths. X denotes undetermined values in the result. In this
example, Bu = 4, ku = 0, Bv = 2, kv = 1.

Note that, if Bv < Bu, the complexity for computing u + v
will not be significantly smaller from the complexity of computing
the sum of two variables with Bu bits (that is, A(Bu)). However,
the cost for computing the product of two Bu-bit variables is (Bu −
1)A(2Bu), which might be much larger than the cost of computing
the product uv if Bv ≪ Bu.

Divisions are considerably more costly than multiplications, but
the single division necessary for normalization in (4) does not need
to be implemented with high precision, and could be implemented
adequately using a few iterations of the Dichotomous Coordinate
Descent (DCD) algorithm as proposed in [19, 20].

Looking back to the number of operations required for imple-
menting the convex combination algorithm, we see that the largest
cost is in implementing the 4M + 8 multiplications. In the next
section, we use this observation to develop a low-cost algorithm for
implementing convex combinations of adaptive filters, by reducing
the cost of the multiplications required by the second filter.

4. DIFFERENCE FILTER

Our goal in this section is to rewrite the recursions (1)–(6) in terms
not of the fast (w1(n)) and slow (w2(n)) filters, but in terms of the

1Other multiplication algorithms are also available [18].
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fast filter and the difference filter

δw(n)
∆
= w2(n)−w1(n). (7)

The rationale is that, since (at least in steady-state) w1(n) and w2(n)
are close to each other, we could use a smaller number of bits to
represent each coefficient of δw(n). In this way, all multiplica-
tions involving δw(n) would be performed at a smaller cost, and
since multiplications represent the larger share of the cost in custom
and semi-custom hardware implementations (compare A(Bu) with
M(Bu, Bv), see also [18, 20, 21]), the final complexity would be
considerably reduced.

Let us then derive a recursion for δw(n). Subtracting (1) for
i = 2 from itself for i = 1, we obtain

δw(n+ 1) = δw(n) + eδ(n)x(n), (8)

where

eδ(n)
∆
= µ2e2(n)− µ1e1(n). (9)

The errors eδ(n) and e2(n) should be computed using the lower
precision, and e2(n) should be computed as

e2(n) = e1(n) + δw
T (n)x(n). (10)

If eδ(n) and δw(n) require Bδ bits for storage and the other vari-
ables B bits, the total complexity of the combination reduces to

C = (2M + 7)M(B,B) + (2M + 7)A(B) + 2MA(Bδ)

+ (2M + 1)M(B,Bδ) + 1 div. + 2 LUTs.
(11)

We must now compare the dynamic range of δw(n) with that of
w1(n) and w2(n). Assume that the data d(n),x(n) satisfy a linear
model [14, 15]

d(n) = w
T
o x(n) + v(n), (12)

where wo ∈ R
M is an unknown vector, and v(n) is white noise,

independent of x(n) and with variance σ2
0 .

Define the weight-error vectors for each filter w̃i(n) = wo −
wi(n). Assuming that all computations are made in fixed-point with
B bits and fixed exponent kb, in steady-state and for small step-
sizes, it can be shown that w̃i(n) is a zero-mean random vector with
autocovariance matrix [15]

Ki
∆
= lim

n→∞
E{w̃i(n)w̃

T
i (n)} ≈

1

2
µi(σ

2
0 + σ2

b )I +
σ2
b

2µi

R
−1,

(13)
where σ2

b = 2−2(B−kb)/12, I is the M × M identity matrix, and
R = E{x(n)xT (n)} is the regressor autocovariance matrix.

Let ξi = max {[Ki]jj}, the maximum diagonal entry of Ki.
Assume that B was chosen so that a certain desired performance is
obtained for the slow filter. Note that B may be specified through
ξ2, or the mean-square deviation MSD2 = Tr(K2), where Tr(·)
represents the trace of its argument, or in terms of the excess mean-
square error (EMSE) ζ2 [15],

ζ2 = Tr(RK2) =
1

2
µ2(σ

2
0 + σ2

b ) Tr(R) +
Mσ2

b

2µ2
. (14)

If the largest variance of the entries of w̃1(n) is ξ1, we can ex-
pect the B1 most significant bits of each entry of w1(n) to remain
approximately constant at their means (or equivalently, the B1 most
significant bits of each entry of w̃1(n) remain approximately equal

to zero). Comparing ξ1 with the variance for simply rounding a vari-
able with B1 bits (2−2B1/12), we can approximate

B1 ≈ −0.5 log2 (12ξ1) . (15)

If fixed point is used, the fixed exponent used for representing δw(n)
and eδ(n) should be kδ ≈ kb − ⌊B1⌋, where ⌊B1⌋ represents the
largest integer smaller than B1 and kb is the exponent used for the
other variables. Note that kδ can be reduced if the probability of
overflow is small.

Now, since the desired performance for the slow filter requires a
number B of bits, the difference filter should have approximately

Bδ ≈ B − (kb − kδ) bits. (16)

This means that the number of bits required to represent the entries
of δw(n) need not be B, but rather Bδ < B. This reduction leads
to a reduced complexity, since multiplications can be performed at
a lower cost. The error eδ(n), defined in (9), can also be computed
with the smaller number of bits.

Although we concentrated our discussion on fixed-point imple-
mentations, the scheme proposed here can also be used with floating-
point implementations, or even with mixed implementations in which
only δw(n) and eδ(n) are implemented using floating point. In full
fixed-point implementations the number of bits required for δw(n)
and eδ(n) will be larger than for floating point for a given perfor-
mance level, to reduce the probability of overflow. This will be il-
lustrated in Section 5.

5. SIMULATIONS

In this section we illustrate the performance of the proposed low-
complexity scheme in a few examples. The filters estimate an M =
7 weight vector, initially equal to

wo =
[

0.9 −0.5 0.2 −0.1 0.8 0.5 −0.1
]T

,

but changed to

wo =
[

0.2 −0.5 −0.4 0 −0.2 0.8 0.2
]T

after 50, 000 iterations. The regressor is a tap-delay line x(n) =
[

x(n) . . . x(n−M + 1)
]T

in which x(n) has variance σ2
x =

0.01 and is generated through

x(n+ 1) = αx(n) + σx

√

1− α2u(n),

with α = 0.5 and u(n) is zero-mean white noise with unit variance.
In all simulations, we consider the convex combination of two LMS
filters with step-sizes µ1 = 0.5, µ2 = 0.05, and µa = 0.1. We also
set η = 0.9, ǫ = 0, and σ2

0 = 0.01.
For comparison, we show in Figure 4 the EMSE of the compo-

nent filters and of their combination along the iterations, assuming
the Matlab precision (floating point with 64 bits: 11 bits for the expo-
nent, 52 bits for the mantissa, and one bit for the sign). As expected,
at each time instant the convex combination follows the component
filter that achieves the lower EMSE, behavior that can be confirmed
through the mixing parameter, also shown in the figure. We should
notice that with this arithmetic precision, the steady-state EMSE for
the combination, given by (14), is ζ2 = −47.6 dB. As can be ob-
served in the figure, this value was achieved by the slow filter and
also by the combination at the steady-state.

Now, we use a fully fixed-point implementation with B = 14
bits for the fast filter and common variables, and different values Bδ
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Fig. 4. Combination in Matlab precision (floating point with 64 bits:
11 bits for the exponent, 52 bits for the mantissa, and one bit for the
sign). Average of L = 100 realizations.

for the number of bits for the difference filter. The fixed exponent
used for the fast filter is kb = 0, so that w1(n) is represented by
variables in the range [−1, 1). Overflow is handled by saturation.
The auxiliary variable a(n) is also represented with B = 14 bits,
but in the interval [−4, 4). Computing B1 through (15), we obtain
B1 = 2.5. We used kδ = 2. Under these conditions, for Bδ = 9
bits we should obtain a steady-state EMSE for the combination as
given by (14) of ζ2 = −47.2 dB, while the value observed in Fig-
ure 5 is −46.5dB. This corresponds to a performance deterioration
of approximately 1.1 dB in terms of EMSE, when compared to the
case of Matlab precision (Figure 4). Figure 6 presents results for
Bδ = 8 bits, showing a steady-state EMSE of −44.3 dB, while the
theoretical value from (14) is −46.4dB. Comparing to the case of
Matlab precision, we have now a performance deterioration of ap-
proximately 3.3 dB in terms of EMSE.
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Fig. 5. Low-cost combination with Bδ = 9 bits and kδ = 2 for
the difference filter, B = 14 bits and kb = 0 for other variables.
Average of L = 100 realizations.

The reduction in complexity is higher if we use floating point.
Using only Bd = 6 bits (mantissa only) and floating point to im-
plement δw(n) and eδ(n) (but still fixed-point with B = 14 for
the other variables), the result is equivalent to Bd = 8 bits in fixed-
point, as shown in Figure 7, where the steady-state EMSE of the
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Fig. 6. Low-cost combination with Bδ = 8 bits and kδ = 2 for
the difference filter, B = 14 bits and kb = 0 for other variables.
Average of L = 100 realizations.
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Fig. 7. Low-cost combination with Bδ = 6 bits and floating point
for the difference filter, B = 14 bits and kb = 0 for other variables.
Average of L = 100 realizations.

combination is ζ = −44.3 dB. Again, this corresponds to a per-
formance deterioration of approximately 3.3 dB in terms of EMSE,
when compared to the case of Matlab precision (Figure 4).

We observe that the proposed scheme (Figures 5–7) presents ap-
proximately the same convergence rate of that of Figure 4, and a
steady-state performance that depends on the number of bits used to
represent the difference filter.

6. CONCLUSION

In this paper, we proposed a combination of adaptive filters with re-
duced computational complexity. Instead of adapting the slow filter
as usual, we update the difference between the slow and fast filters,
which can be represented using lower-precision arithmetic. The new
scheme can be used with fixed-point, floating-point, or even mixed
implementations. Depending on the number of bits used for rep-
resenting the difference filter, a small degradation on steady-state
EMSE will be observed, but the convergence rate is not affected.
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