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ABSTRACT

We propose two versions of affine projection (AP) algorithms tai-

lored for sparse system identification (SSI). Contrary to most adap-

tive filtering algorithms devised for SSI, which are based on the l1

norm, the proposed algorithms rely on homotopic l0 normminimiza-

tion, which has proven to yield better results in some practical con-

texts. The first proposal is obtained by direct minimization of the

AP cost function with a penalty function based on the l0 norm of the

coefficient vector, whereas the second algorithm is a simplified ver-

sion of the first proposal. Simulation results are presented in order

to evaluate the performance of the proposed algorithms considering

three different homotopies to the l0 norm as well as competing algo-

rithms.

Index Terms— Affine projection, l0 norm, sparsity, sparse sys-

tem identification, adaptive filtering

1. INTRODUCTION

System identification (SI) has been a widely studied topic due to its

importance in applied sciences, especially in Engineering [1]. Many

practical applications involve unknown systems that can be prop-

erly modeled as having finite memory, justifying the fact that finite-

duration impulse response (FIR) filters are more used than infinite-

duration impulse response (IIR) filters.

In the SI context one frequently faces two problems: (i) lack of

a priori information/specifications and (ii) time-varying characteris-

tics of the unknown system. Adaptive filtering algorithms have be-

come a popular tool to cope with those problems in SI. In particular,

the least mean square (LMS) and recursive least squares (RLS) algo-

rithms [2] are the most widely known. Indeed, the LMS is quite used

due to its computational simplicity, whereas the RLS provides faster

convergence but its application might be sometimes hindered due to

its relatively high computational complexity. The affine projection

(AP) algorithm, on the other hand, is well-known for representing a

tradeoff between complexity and convergence speed [2, 3, 4].

Although the aforementioned adaptive filtering algorithms have

already proven their values, their related convergence speeds degrade

as the impulse response1 of the unknown system becomes longer [5,

6]. Fortunately, in several practical cases (e.g., in echo cancellation),

long impulse responses are also sparse/compressible, i.e., most of

their components have values close to zero. The sparsity inherent to
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1The term “the impulse response”, which is often found in the adaptive-

filtering literature, is loose since the system could be time-varying. The
reader should keep in mind that the idea here is that the unknown system
has long memory.

such systems can be exploited in order to increase the convergence

speed of adaptive filtering algorithms, as shown in [5, 6, 7, 8].

Sparsity is directly revealed by the l0 norm,2 but minimization

of such a norm is a very difficult task (NP-hard problem). Borrow-

ing some results from the compressed sensing literature, in particu-

lar the equivalence between l0 and l1 minimizations for sufficiently

high dimensional problems, some algorithms using (directly or indi-

rectly) the l1 norm have been derived, such as the ones proposed

in [6, 7, 8, 10, 11, 12, 13, 14, 15, 16]. Indeed, l1 minimization

leads to a convex problem, which is much more tractable. However,

some papers [17, 18] have shown that the results achieved via l0

norm minimization outperform the ones obtained using the l1 norm

in practical conditions. Performance differences occur since some

practical applications do not meet exactly the constraints required to

characterize the equivalence between l0 and l1 norm minimizations.

Roughly speaking, those constraints impose that the proportion of

nonzero coefficients must be very small as compared to the propor-

tion of zero/small-value coefficients in the associated parameter vec-

tor [18].

In this paper, we tackle the sparse SI (SSI) problem via homo-

topic l0 norm minimization, as presented in an image processing

context [17]. The same idea has been previously used to derive the l0

norm-constraint LMS algorithm [19], but considering just one type

of l0 norm homotopy, which is based on the Laplace function. This

paper, on the other hand, presents two versions of the AP algorithm

employing three different homotopies to the l0 norm. In addition, we

describe the connection between one of the proposed algorithms and

the algorithm proposed in [19], and then we show simulation results

aimed at evaluating the utilized homotopies as well as comparing

their performances against some competing algorithms [6].

This paper is organized as follows. Section 2 provides a brief

review of the AP algorithm while also establishes the notation. Sec-

tion 3 presents the two proposed l0-norm-based algorithms, explain-

ing how homotopies are used to enable the approximation of the

gradient of an l0-norm function. The competing algorithms are dis-

cussed in Section 4. In Section 5, the performance of the proposed

algorithms is evaluated in different setups: (i) varying the l0-norm

homotopies and (ii) varying the degree of sparsity of the unknown

system. The conclusions are drawn in Section 6.

2. AP ALGORITHM

Before describing the AP algorithm, let us define some important

variables in the context of adaptive filtering. Let x(k),w(k) ∈
R

N+1 be the input vector (sometimes called regressor) and the co-

efficient vector for a given iteration k ∈ Z, respectively. Let the

2The l0 norm of a vector is the number of coefficients within this vector
that are different from zero. In fact, it is not a true norm [9].
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reference (or desired) signal be denoted by d(k) ∈ R, the output of

the filter be defined as y(k) , xT (k)w(k), and the error signal be

given as e(k) , d(k)− y(k).
The AP algorithm, originally proposed in [3], reuses previous in-

put vectors to increase convergence speed. Assuming we have avail-

able the lastL+1 ∈ N data pairs of input vectors and desired signals,

we define the input matrixX(k) , [x(k) x(k−1) . . . x(k−L)] ∈

R
(N+1)×(L+1), the desired vector d(k) , [d(k) d(k−1) . . . d(k−

L)]T ∈ R
L+1, and the error vector e(k) , d(k)−XT (k)w(k).

Geometrically, the updating process of the AP algorithm yields

a coefficient vector w(k + 1) which is as close as possible to w(k)
(minimum perturbation criterion in the Euclidean distance sense)

and whose associated a posteriori error is equal to zero, i.e., d(k)−
XT (k)w(k + 1) = 0. Mathematically, the optimization problem

solved by the AP algorithm is

minimize ‖w(k + 1)−w(k)‖22

subject to d(k)−X
T (k)w(k + 1) = 0, (1)

which leads to the updating equation of the AP algorithm:

w(k + 1) = w(k) +X(k)
(

X
T (k)X(k)

)−1

e(k). (2)

In practice, a regularization factor R+ ∋ δ ≪ 1 is usually em-

ployed to avoid numerical instability due to matrix inversion. In

addition, a convergence factor (step-size) R+ ∋ µ < 1 is also used

to relax the constraint of the optimization problem, thus enabling

smaller steps in the updating process. Therefore, the AP algorithm

is commonly implemented as [2]

w(k + 1) = w(k) + µX(k)
(

X
T (k)X(k) + δI

)−1

e(k). (3)

3. PROPOSED AP-BASED ALGORITHMS

In this section we propose two algorithms that take into account the

l0 norm of the coefficient vector: the AP algorithm for sparse system

identification (AP-SSI) and the quasi AP-SSI (QAP-SSI). The AP-

SSI is obtained by adding a penalty function based on the l0 norm

of w(k + 1) to the standard AP cost function, whereas the aim of

the QAP-SSI is to reduce the computational complexity of the AP-

SSI and also to enable a more general updating process, as it will be

further explained.

3.1. AP-SSI

In this subsection, we derive the AP-SSI algorithm. As previously

mentioned, AP-SSI adds a penalty function based on the l0 norm

of w(k + 1) to the AP optimization problem in order to promote

sparsity at each iteration. Thus, the AP-SSI optimization problem is

given by

minimize ‖w(k + 1)−w(k)‖22 + α‖w(k + 1)‖0

subject to d(k)−X
T (k)w(k + 1) = 0, (4)

where α ∈ R+ is a nonnegative parameter that determines the

weight given to the l0 norm penalty.

In order to solve this optimization problem, we form the La-

grangean L as

L =‖w(k + 1)−w(k)‖22 + α‖w(k + 1)‖0

+ λ
T (k)

[

d(k)−X
T (k)w(k + 1)

]

, (5)

differentiate it with respect to w(k + 1) and λ(k), and equal the

resulting expressions to zero (i.e., ∇L = 0), thus yielding

w(k + 1) = w(k) +X(k)
λ(k)

2
−

α

2
∇‖w(k + 1)‖0, (6)

d(k) = X
T (k)w(k + 1), (7)

respectively. Then, the left-multiplication of eq. (6) by XT (k) and
the substitution of eq. (7) into the resulting equation generates (as-

suming that XT (k)X(k) is invertible)

λ(k)

2
=
(

X
T (k)X(k)

)−1

e(k)

+
α

2

(

X
T (k)X(k)

)−1

X
T (k)∇‖w(k + 1)‖0. (8)

Substituting eq. (8) into eq. (6) leads to the updating equation of

AP-SSI

w(k + 1) =w(k) +X(k)
(

X
T (k)X(k)

)−1

e(k)

+
α

2

[

X(k)
(

X
T (k)X(k)

)−1

X
T (k)− I

]

×∇‖w(k + 1)‖0. (9)

3.2. QAP-SSI

Eq. (9) takes into account the projection of ∇‖w(k + 1)‖0 onto

the subspace which is orthogonal to the space spanned by X(k).
Such a property is important to guarantee that the a posteriori er-

ror vector is indeed zero. In effect, left-multiplication of eq. (9) by

XT (k) cancels the term which depends on ∇‖w(k + 1)‖0, so that

XT (k)w(k + 1) = d(k), as expected. If one does not impose such

a greedy constraint by allowing a nonzero a posteriori error vector,

then a more flexible updating process could be achieved. A simple

way of implementing this constraint relaxation, while taking advan-

tage of the proposal derived in Subsection 3.1, is to directly use the

vector ∇‖w(k + 1)‖0 rather than its associated projection. Thus,

the proposed QAP-SSI updating equation is

w(k + 1) =w(k) +X(k)
(

X
T (k)X(k)

)−1

e(k)

−
α

2
∇‖w(k + 1)‖0 . (10)

It is worth mentioning that, in comparison with the AP-SSI, the

QAP-SSI is less complex and achieves a more flexible updating pro-

cess since there is no projection applied to the term∇‖w(k+ 1)‖0.
Indeed, observe that left-multiplication of eq. (10) by XT (k) leads
toXT (k)w(k+1) = d(k)−α

2
XT (k)∇‖w(k+1)‖0, thus implying

that the a posterior error vector is no longer zero. In fact, QAP-SSI

is not a true AP algorithm, i.e., it does not generate w(k + 1) as a
projection of w(k) onto some space.

Note that the current forms of eqs. (9) and (10) cannot be imple-

mented in practice, since the term ∇‖w(k + 1)‖0 has two issues:

(i) requires a proper definition for the derivative of the l0 norm and

(ii) depends on w(k + 1). Some tricks to overcome such undesir-

able features as well as practical updating equations are presented in

Subsections 3.3 and 3.4.

3.3. Homotopic l0 norm

It remains to adapt the proposed updating equations of Subsec-

tions 3.1 and 3.2 so that they can be employed in practical adaptive

5667



filters, which have an inherent online nature. Indeed, eqs. (9)

and (10) depend on the derivative of the l0 norm of w(k + 1)
since they are related to the minimization of the l0 norm of the

coefficient vector (sparsity constraint), thus leading to an NP-hard

problem (in plain English, it is very difficult to work with such a

norm, especially in online applications). Therefore, when online

algorithms are required, it is common practice to approximate the l0

norm by some continuous and differentiable function, allowing one

to use gradient-based methods straightforwardly. In this subsection,

we show typical approximations for the l0 norm of an arbitrary

vector z ∈ R
N+1 and compute their derivatives with respect to

z , [z0 z1 . . . zN ]T .
The following approximations for the l0 norm are valid:

‖z‖0 ≈

N
∑

i=0

(

1− e−β|zi|
)

, (11)

‖z‖0 ≈
N
∑

i=0

(

1− e−
1

2
β2z2

i

)

, (12)

‖z‖0 ≈

N
∑

i=0

(

1−
1

β|zi|+ 1

)

, (13)

where eqs. (11) and (13) are based on the well-known Laplace [20]

and Geman-McClure [21] functions, respectively, whereas eq. (12)

is also used in [22]. Experimental results presented in [22], whose

aim is to compare different approximations for the l0 norm, show

that the Geman-McClure function leads to a fast implementation and

accurate reconstruction in the compressed sensing (CS) context, con-

sidering a fixed-point CS processor.

The idea here is that, when the nonnegative parameter β ∈ R+

which appears in eqs. (11), (12), and (13) is sufficiently large, all of

these approximations essentially count the number of nonzero values

in the vector z. Indeed, for all approximations, one addsN+1 terms

of the form 1 − Fβ(zi), where Fβ(zi) can be e−β|zi| or e−
1

2
β2z2

i

or 1
β|zi|+1

. It is straightforward to see that, when zi = 0, one has

Fβ(zi) = 1, for whichever choice of Fβ(zi). On the other hand, if

zi 6= 0, then |zi| > 0 so that one hasFβ(zi) → 0 as long as β → ∞,

for whichever choice of Fβ(zi). These facts eventually mean that,

when zi = 0, the term 1 − Fβ(zi) in the above sums will be zero,

whereas when zi 6= 0, that term will be approximately 1 for large β.

The term homotopic comes from the fact that those approximations

of the l0 norm are continuous functions of the parameter β and can

be continuously distorted to yield the actual l0 norm of z.

The corresponding derivatives fβ(zi) ,
d‖z‖0
dzi

of the above ap-

proximations are

fβ(zi) ≈ βsign(zi)e
−β|zi|, (14)

fβ(zi) ≈ β
2
zie

− 1

2
β2z2

i , (15)

fβ(zi) ≈
βsign(zi)

(β|zi|+ 1)2
. (16)

Observe that the functions fβ(zi) in eqs. (14) and (16) have a dis-

continuity at zi = 0, whereas eq. (15) is continuous everywhere.
Thus, we can define the gradient of ‖z‖0 with respect to z as

∇‖z‖0 = fβ(z) , [fβ(z0) fβ(z1) . . . fβ(zN )]T . (17)

3.4. Implemented updating equations

Now that we have available good approximations for the gradient

of the l0 norm, we can rewrite eqs. (9) and (10) in a way that is

amenable to online implementations.

The implemented updating equation for the AP-SSI is

w(k + 1) =w(k) + µX(k)S(k)e(k)

+ µ
α

2

[

X(k)S(k)XT (k)− I
]

fβ (w(k)) , (18)

in which S(k) ,
(

XT (k)X(k) + δI
)−1

, δ is a regularization fac-

tor, and µ is the step-size factor. Note that, since we do not know a

priori the exact value of ‖w(k + 1)‖0 at the kth iteration, and since

we are also minimizing ‖w(k + 1)−w(k)‖22, then it is reasonable

to assume that ‖w(k+1)‖0 ≈ ‖w(k)‖0, so that∇‖w(k+1)‖0 ≈

∇‖w(k)‖0 = fβ (w(k)) = [fβ (w0(k)) . . . fβ (wN (k))]T , as
given in eq. (17). In this case, fβ (wi(k)) can be computed using

any approximation described in Subsection 3.3.

Similarly, the implemented update for the QAP-SSI is

w(k + 1) =w(k) + µX(k)S(k)e(k)− µ
α

2
fβ (w(k)) . (19)

It is worth pointing out that this proposed QAP-SSI updating equa-

tion encompasses the l0-NLMS algorithm in [19]. Indeed, the l0-

NLMS algorithm can be achieved by setting the QAP-SSI in the

following way: (i) L = 0, (ii) fβ (w0(k)) as a first-order approx-

imation via Taylor series of eq. (14).

4. COMPETING ALGORITHMS

Aiming at describing how our contribution is related to prior work in

the field, this section briefly describes the two algorithms proposed

in [6], viz. the zero-attracting affine projection algorithm (ZA-APA)

and the reweighted ZA-APA (RZA-APA), The ZA-APA algorithm

was derived by directly minimization of the AP cost function plus a

penalty function based on the l1 norm ofw(k). In order to highlight
the similarities between AP-SSI and ZA-APA algorithms, we write

the updating equation of the ZA-APA algorithm as3

w(k + 1) =w(k) + µX(k)S(k)e(k)

+ µ
α

2

[

X(k)S(k)XT (k)− I
]

sign (w(k)) , (20)

where sign (w(k)) is the element-wise sign function.

Similarly, the RZA-APA updating equation can be written as

w(k + 1) =w(k) + µX(k)S(k)e(k)

+ µ
α

2

[

X(k)S(k)XT (k)− I
]

P (w(k)) , (21)

where P (w(k)) ∈ R
N+1 is defined as

P (w(k)) , sign (w(k))÷ (1+ ǫ|w(k)|) , (22)

where the symbol ÷ stands for the element-wise division of the first

vector by the second vector, 1 is a vector whose N + 1 entries are

equal to 1, |w(k)| is the element-wise absolute value, and ǫ ∈ R is

called the shrinkage magnitude [6].

One can easily see that both ZA-APA and RZA-APA algorithms

differ from the proposed AP-SSI algorithm only in the definition of

the vector that multiplies the term µα
2

[

X(k)S(k)XT (k)− I
]

. Our

proposal employs an homotopic approximation for the derivative of

the l0 norm ofw(k+1). This key difference is enough to yield better
results in the context of sparse systems, as the simulation results of

Section 5 indicate.

3The only difference between eq. (20) and the ZA-APA of [6] is a regu-
larization factor δ which appears in the definition of S(k) after eq. (18). In
addition, we incorporated the step-size factor µ in every term that is added to
w(k), which essentially implies that our α is a scaled version of the α in [6].
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Fig. 2. Degree of sparsity.

5. SIMULATION RESULTS

We present the simulation scenarios in Subsection 5.1 and then, in

Subsection 5.2, we evaluate the AP-SSI and QAP-SSI considering

all the homotopies presented in Subsection 3.3. In Subsection 5.3,

using the homotopy that leads to the best results, we compare the

proposed algorithms versus the ones described in Section 4.

5.1. Scenarios

The simulation scenarios we consider are the same three experiments

proposed in [6]. Those scenarios allow us to assess the performance

of the proposed algorithms for different degrees of sparsity. The

experiments consist of identifying an unknown system composed of

16 coefficients, whose taps are set as follows: (i) Exp. 1: 4th tap

equal to 1, others equal to 0; (ii) Exp. 2: odd taps equal to 1, even
taps equal to 0; and (iii) Exp. 3: all taps equal to 1.

Regarding the adaptive filter parameters, the number of coeffi-

cients is 16 and the following algorithms are tested: the proposed

ones (AP-SSI and QAP-SSI), the proposals of [6] (ZA-APA and

RZA-APA), and the classical ones (AP and NLMS) to serve as

benchmarks for comparisons. The algorithms were set so that they

have a similar convergence speed.4 Thus, we use step-size µ = 0.9,
regularization factor δ = 10−12, reuse factor L = 4, β = 5 (follow-
ing the suggestion of [19]), and, in accordance with the suggested

values in [6], we use α = 5 × 10−3 and ǫ = 100. In addition,

the reference signal d(k) is assumed to be corrupted by an additive

white Gaussian measurement noise with variance σ2
n = 0.01.

5.2. Performance evaluation: homotopy

The AP-SSI and QAP-SSI were tested in several scenarios using the

l0 norm homotopies given in eqs. (11) to (13). Throughout all sce-

narios we tested, the following observations always hold: (i) conver-

gence speed was similar for all homotopies; (ii) eq. (12) leads to the

worst results in terms of steady-state mean-square error (MSE); and

(iii) approximations based on eqs. (11) and (13) exhibit almost iden-

tical performances. Fig. 1 depicts an example considering Exp. 1.

In the results shown in Subsection 5.3, the proposed algorithms

employ the Geman-McClure homotopy given in eq. (13) since the

implementation cost of eq. (16) is lower than the one of eq. (14).

4This observation is valid for the AP-based algorithms. By using the same
step-size µ of the AP algorithm, the NLMS algorithm will be slower.
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Fig. 1. Comparing the homotopies for the two proposed algorithms

considering the scenario of Exp. 1 described in Subsection 5.3.

5.3. Performance evaluation: degree of sparsity

Fig. 2 depicts the MSE results for Exps. 1, 2, and 3. It can be

observed that the convergence speeds are similar for all AP-based

methods. Fig. 2(a) shows that by exploiting the sparsity of the un-

derlying unknown system, all four algorithms (AP-SSI, QAP-SSI,

ZA-APA, and RZA-APA) outperform the AP algorithm. Actually,

the proposed AP-SSI and QAP-SSI algorithms achieved the best re-

sults. As depicted in Figs. 2(b) and (c), as the unknown system be-

comes less sparse, the performances of the algorithms which explic-

itly take sparsity into account in their formulations become worse

and converge to the performance of the AP algorithm when there is

no sparsity (see Fig. 2(c)). However, one may note that when the

sparsity factor is 50% (Exp. 2), the performance of the methods

based on l1 norm is not very different from that of the AP algorithm,

whereas the proposed methods lead to a better performance.

6. CONCLUSION

This paper proposed two novel data-reusing adaptive filtering al-

gorithms which allow efficient identification of sparse systems.

The key feature of the proposed algorithms, namely the AP-SSI

and QAP-SSI, is that they consider the sparsity feature by using

l0 norm, whose capability of promoting sparsity in some practical

contexts without impairing performance is proven to be superior

to other norms, such as the l1 norm. The inherent difficulties of

working directly with the l0 norm are circumvented by the use of

homotopic approximations of the derivative of the l0 norm of the

filter coefficient vector. Simulation results indicate that the proposed

algorithms outperform other competing algorithms, especially when

the degree of sparsity is relatively high, and suggest the use of the

Geman-McClure homotopy.
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