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ABSTRACT

A new adaptive comb filtering algorithm, capable of tracking the

fundamental frequency and amplitudes of different frequency com-

ponents of a nonstationary harmonic signal embedded in white mea-

surement noise, is proposed. Frequency tracking characteristics of

the new scheme are studied analytically, proving (under Gaussian

assumptions and optimal tuning) its statistical efficiency for quasi-

linear frequency changes. Laboratory tests show that the proposed

algorithm can be successfully used for active control of MRI noise.

Index Terms— Adaptive comb filtering, active noise cancelling

1. INTRODUCTION

Rotating machinery generates disturbances (noise, vibrations) that

usually consist of several sinusoidal components with frequencies,

called harmonics, that are integer multiplies of the fundamental fre-

quency. When the speed of rotation and/or working load change

over time, such signals are subject to both amplitude and frequency

changes while preserving their harmonic structure – for this reason

they can be called quasi-harmonic. MRI (magnetic resonance imag-

ing) equipment is another well-known source of quasi-harmonic dis-

turbances – due to its high intensity, exceeding 100 dB SPL, MRI

noise (generated by vibrating gradient coils) is very annoying both

for the patients and for the medical staff.

Quasi-periodic signals with multiple frequency components that

are not harmonically related can be estimated/tracked using parallel

estimation schemes made up of algorithms known as adaptive notch

filters (ANFs) – for more details see e.g. [1]. Since each filter com-

prising such a bank of ANFs works independently of other filters,

the harmonic structure of the analyzed signal – when present – can’t

be exploited in any way. This results in less efficient tracking, both

in terms of accuracy and robustness, compared to estimation based

on coordinated frequency search. The algorithms that perform such

a coordinated search are called adaptive comb filters (ACFs) [2]–[6].

The contribution of this paper is threefold. First, we propose a

novel ACF algorithm and study its tracking properties. Second, we

incorporate this new harmonic tracker into SONIC (self-optimizing

narrowband interference canceller) – the active noise control algo-

rithm proposed in [7]-[10]. Finally, we demonstrate effectiveness of

the new control scheme when applied to reduction of MRI noise.

This work was partially supported by the National Science Center.

2. ADAPTIVE COMB FILTER

Consider the problem of extraction or cancellation of a complex-

valued nonstationary sinusoidal disturbance d(t) embedded in white

measurement noise v(t)

y(t) = d(t) + v(t) (1)

where y(t) denotes the measured signal and t = . . . ,−1, 0, 1, . . .
denotes normalized discrete time. We will assume that

d(t) =

K∑

k=1

dk(t), dk(t) = ak(t)e
jφk(t)

ak(t) = βk(t)e
jνk , φk(t) =

t∑

i=1

ωk(i) (2)

where the quantities βk(t), ωk(t), and νk (all real-valued) denote

respectively the (slowly time varying) amplitude, instantaneous fre-

quency, and initial phase shift of the k-th cisoid dk(t). Furthermore,

we will assume that the signal d(t) is quasi-harmonic, i.e., that the

frequencies ωk(t) are harmonically related

ωk(t) = mkω0(t), k = 1, . . . , K (3)

where ω0(t) denotes the fundamental frequency and mk are integer

numbers (mk = k when all harmonics are present, mk = 2k − 1
when only odd harmonics are present etc.).

2.1. Adaptive notch filtering algorithm

A single nonstationary cisoid (K = 1) governed by

d(t) = a(t)f(t), f(t) = ej
∑

t

i=1
ω(i)

can be efficiently tracked using the ANF algorithm proposed in [1],

presented below in a slightly modified (but equivalent) form

ε(t) = y(t)− d̂(t|t− 1)

d̂(t+ 1|t) = ejω̂(t|t−1)[d̂(t|t− 1) + µε(t)]

g(t) =
Im[ε(t)d̂∗(t|t− 1)]

|d̂(t|t− 1)|2

ω̂(t|t− 1) = ω̂(t− 1) + α̂(t− 1)

α̂(t) = α̂(t− 1) + γαg(t)

ω̂(t) = ω̂(t|t− 1) + γωg(t) (4)
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where α̂(t) is an estimate of the rate of change of the instantaneous

frequency α(t) = ω(t + 1) − ω(t), and µ > 0, γω > 0, γα > 0,

such that γα ≪ γω ≪ µ, denote small adaptation gains determining

the rate of amplitude adaptation, frequency adaptation and frequency

rate adaptation, respectively.

The gradient search strategy, incorporated in (4) for the purpose

of tracking ω(t) and α(t), is based on minimization of the following

instantaneous measure of fit J(t) = |ǫ(t)|2/2, where ǫ(t) = y(t)−
f(t)â(t− 1). Note that

∂J(t)

∂ω(t)
= Re

[
ǫ(t)

∂ǫ∗(t)

∂ω(t)

]
= −Re [jǫ(t)f∗(t)â∗(t− 1)]

= −Im [ǫ(t)f∗(t)â∗(t− 1)] . (5)

Since d̂(t|t − 1) = f̂(t)â(t − 1) ∼= f(t)â(t − 1), the term g(t)
in (4) can be interpreted as a normalized estimate of the (negative)

gradient (5). The normalization term |d̂(t|t − 1)|2, which can be

regarded as an estimate of the power of d(t), makes the algorithm

scale-invariant.

When the analyzed signal y(t) is real-valued the algorithm (4)

can be used after replacing the one-step-ahead prediction error ε(t)

with εR(t) = Re[ε(t)] = y(t)−Re
[
d̂(t|t− 1)

]
. Alternatively, one

can generate the complex-valued version of the signal y(t) by means

of applying the discrete Hilbert transform.

2.2. Adaptive comb filtering algorithm

Using the surrogate output technique, introduced in [5], the multiple-

frequency ANF algorithm can be obtained by means of combining

several single-frequency ANFs. The resulting parallel estima-

tion scheme is driven by the common prediction error ε(t) =

y(t) −
∑K

k=1 d̂k(t|t − 1), but the signal components dk(t) are

treated as mutually unrelated quantities and estimated indepen-

dently of one another. Adaptive comb filter designed in this way

has two drawbacks. First, the multiple frequency ANF performs an

unconstrained frequency search while the true harmonics vary in

a coordinated way. As a consequence, its tracking characteristics

are inferior to those offered by algorithms that incorporate the har-

monic constraints (3). According to [2] and [3], the accuracy gains

achieved by taking into account (3) may be substantial. Second,

the multiple-frequency ANFs are usually less robust to incorrect

frequency matching than the true ACF algorithms. Even if the initial

frequency assignment is correct, the sub-algorithms tracking weak

signal components, i.e., those characterized by small values of the

signal-to-noise ratio SNRk(t) = |dk(t)|
2/σ2

v(t), may, after some

time, lock onto the neighboring, stronger components. The situation

becomes even more complicated if the ‘strength’ of different signal

components changes over time.

In order to obtain algorithm that performs coordinated search

of the instantaneous fundamental frequency ω0(t), one should min-

imize J(t) for

ǫ(t) = y(t)−
K∑

k=1

fk(t)âk(t− 1)

where, according to (2) and (3), it holds that fk(t) = ej
∑

t

i=1
ωk(i) =

ejmk

∑
t

i=1
ω0(i). Noting that

∂J(t)

∂ω0(t)
= −

K∑

k=1

mkIm [ǫ(t)f∗
k (t)â

∗
k(t− 1)] ,

one arrives at the following ACF algorithm which is an extension of

the ANF (4) to the multi-harmonic case:

ε(t) = y(t)−

K∑

k=1

d̂k(t|t− 1)

d̂k(t+ 1|t) = ejmkω̂0(t|t−1)[d̂k(t|t− 1) + µε(t)]

k = 1, . . . , K

g(t) =

∑K

k=1mkIm[ε(t)d̂∗k(t|t− 1)]
∑K

k=1 m
2
k|d̂k(t|t− 1)|2

ω̂0(t|t− 1) = ω̂0(t− 1) + α̂0(t− 1)

α̂0(t) = α̂0(t− 1) + γαg(t)

ω̂0(t) = ω̂0(t|t− 1) + γωg(t)

d̂(t+ 1|t) =
K∑

k=1

d̂k(t+ 1|t) (6)

The gradient term in (6) is divided by
∑K

k=1 m
2
k|d̂k(t|t−1)|2, which

is an estimate of the so-called effective signal power [2], [3].

2.3. Tracking properties of ACF

In order to perform tracking analysis of the ACF algorithm (6), we

will assume that

(A1) The measurement noise {v(t)} is a zero-mean circular

white sequence with variance σ2
v .

(A2) ak(t) ≡ ak, i.e., dk(t) = ejmkω0(t)dk(t − 1), k =
1, . . . ,K, ∀t.

Note that under (A2) the amplitudes of signal harmonics are con-

stant, i.e., the fundamental frequency changes are only source of

signal nonstationarity.

Denote by ∆ω̂(t) = ω0(t)− ω̂0(t) and ∆α̂(t) = α0(t)− α̂0(t)
the frequency and frequency rate tracking errors, respectively. Given

that the one-step frequency rate changes δ(t) = α(t)−α(t− 1) are

uniformly small, the evolution of tracking errors can be analyzed us-

ing the approximating linear filter (ALF) technique – the stochastic

linearization approach proposed in [11] and [12]. When carrying

ALF analysis, one should neglect all terms of order higher than one

in ∆ω̂k(t), ∆α̂k(t), δ(t) and v(t), including all cross-terms. Ap-

plying this approach to analysis of (6), one obtains the following

approximate error equations (the derivation follows the lines of the

analogous derivation given in [1]; the deterministic averaging tech-

nique is used to cope with multiple harmonics)

∆ω̂0(t) ∼= G1(q
−1)e0(t) +G2(q

−1)δ(t) (7)

∆α̂0(t) ∼= H1(q
−1)e0(t) +H2(q

−1)δ(t) (8)

where

e0(t) =
K∑

k=1

mkek(t) , ek(t) = −Im
[
d∗k(t)v(t)/a

2
0

]

and a2
0 =

∑K

k=1 m
2
ka

2
k denotes the effective power of a harmonic

signal d(t). Note that in the multiple-frequency case (K > 1) it

holds that a2
0 >

∑K

k=1 a
2
k, i.e., the effective power of d(t) is larger
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than its power. One can show that {ek(t)}, k = 1, . . . ,K are zero-

mean, mutually orthogonal, white noise sequences with variances

equal to

var[ek(t)] = E[|ek(t)|
2] =

σ2
va

2
k

2a4
0

.

The transfer functions G1(q
−1), G2(q

−1), H1(q
−1) and

H2(q
−1) are given by

G1(q
−1) = (1− q−1)[γω + (γα − γω)q

−1]/D(q−1)

G2(q
−1) = q−1[1− γω − (1− µ)q−1]/D(q−1)

H1(q
−1) = γα(1− q−1)2/D(q−1)

H2(q
−1) = [1 + (µ+ γω − 2)q−1 + (1− µ)q−2]/D(q−1)

where D(q−1) = 1+d1q
−1+d2q

−2+d3q
−3, d1 = µ+γω+γα−3,

d2 = 3−2µ−γω , d3 = µ−1. All filters are asymptotically stable if

adaptation gains fulfill the following (sufficient) stability conditions:

0 < µ < 1, 0 < γω < 1, 0 < γα < 1 and µ(γω + γα) > γα.

Since the ALF equations (7)-(8) have identical form as those

established earlier for the single-frequency algorithm (5) – only the

expression for the variance of white noise {e0(t)} is different – all

major conclusions reached in [1] for the ANF algorithm (5) carry on

to the ACF algorithm (6). In particular, it can be shown that when

the frequency rate α0(t) drifts according to the random-walk model

(A3) {δ(t)}, independent of {v(t)}, is a zero-mean white se-

quence with variance σ2
δ ,

i.e., when the fundamental frequency ω0(t) changes according to the

integrated random-walk model (pseudo-linear variation), and when

both noise sources are Gaussian

(A4) The sequences {v(t)} and {δ(t)} are normally distributed,

the optimally-tuned ACF (6) is a statistically efficient frequency es-

timation algorithm, i.e., it reaches the Cramér-Rao-type lower track-

ing bound that limits tracking performance of any adaptive comb

filter [13].

3. ACTIVE CONTROL OF MRI NOISE

One of the potential applications of the proposed adaptive comb

filtering scheme is active cancellation of nonstationary harmonic

noise. Active cancellation can be achieved by means of generating

an acoustic waveform (“antisound”) that, in the area/point of inter-

est, has the same shape as the disturbance waveform, but opposite

polarity [14], [15]. The problem of narrowband disturbance rejec-

tion was considered by many authors under different methodologies,

such as filtered-X LMS (FXLMS) compensation [15], [16], internal

model principle [17], [18], and phase-locked loop control [19], [20].

Recently a completely new approach, based on adaptive gain

scheduling, was introduced in a series of papers [7]-[10]. The new

scheme, called SONIC (self-optimizing narrowband interference

canceller) offers some unique advantages compared to the existing

solutions, such as increased robustness to modeling errors and im-

proved tracking capabilities under nonstationary conditions. SONIC

is a feedback ANC designed for the sytem governed by

y(t) = Hs(q
−1)u(t− 1) + d(t) + v(t)

where y(t) denotes the signal picked by the error microphone,

Hs(q
−1) denotes transfer function of the secondary path, and u(t)

denotes the error-dependent canceling signal. Incorporating adaptive

comb filter (6) into SONIC, one arrives at the following algorithm

zk(t) = ejmkω̂0(t|t−1)
[
(1− cµ)zk(t− 1)

−
cµ

µ̂k(t− 1)
y(t− 1)

]
(9a)

rk(t) = ρrk(t− 1) + |zk(t)|
2

(9b)

µ̂k(t) = µ̂k(t− 1)−
y(t)z∗k(t)

rk(t)
(9c)

d̂k(t+ 1|t) = ejmkω̂0(t|t−1)[d̂k(t|t− 1) + µ̂k(t)y(t)] (9d)

g(t) =

∑K

k=1 mkIm[µ̂k(t)y(t)d̂
∗
k(t|t− 1)]

∑K

k=1m
2
k|d̂k(t|t− 1)|2

(9e)

ω̂0(t|t− 1) = ω̂0(t− 1) + α̂0(t− 1) (9f)

α̂0(t) = α̂0(t− 1) + γαg(t) (9g)

ω̂0(t) = ω̂0(t|t− 1) + γωg(t) (9h)

uk(t) = −
d̂k(t+ 1|t)

hn[mkω̂0(t)]
(9i)

k = 1, . . . ,K

u(t) = Re

[
K∑

k=1

uk(t)

]
(9j)

where ρ ∼= 1, 0 < ρ < 1, is the forgetting constant which determines

the effective length of the tuning memory, cµ > 0 is a small constant,

and the complex-valued coefficients hn[mkω̂0(t)] = Hn[e
−jω̂k(t)],

k = 1, . . . ,K, denote the nominal (assumed) steady-state gains of

the secondary path at the harmonic frequencies ω̂k(t), usually dif-

ferent from the true gains Hs[e
−jω̂k(t)].

The algorithm summarized above consists of three mutually

coupled loops. The predictive control loop, governed by (9d), (9i)

and (9j), performs the one-step-ahead prediction of the disturbance

and works out the cancellation signal. The self-optimization loop

(9a)-(9c) is used to adjust the complex-valued adaptation gains µ̂k(t)
to the rate of nonstationarity of the disturbance. When appropriately

tuned, these gains are also capable of compensating modeling errors

caused by imprecise knowledge of the secondary path. Finally, the

frequency tracking loop (9e)-(9h) performs gradient search of the

fundamental frequency and is almost identical with the analogous

part of the ACF algorithm (6) – the only (but important) difference

is due to the presence of the adaptation gains in the formula used

for gradient evaluation. To shed some light on the origin of this

modification [derivation of (9) would require much more space] we

note that the frequency update mechanism proposed in [10] for the

single-frequency ANC, has the form

ω̂(t) = (1− γω)ω̂(t|t− 1) + γωArg

[
d̂(t+ 1|t)

d̂(t|t− 1)

]

= ω̂(t|t− 1) + γωArg

[
d̂(t+ 1|t)e−jω̂(t|t−1)

d̂(t|t− 1)

]

= ω̂(t|t− 1) + γωIm

{
log

[
1 +

µ̂(t)y(t)

d̂(t|t− 1)

]}
(10)

where Arg[·] denotes the principal argument of a complex number.
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For small values of µ̂(t), which usually settle down in the closed-

loop system, the correction term in (10) is approximately equal to

Im

[
µ̂(t)y(t)

d̂(t|t− 1)

]
=

Im[µ̂(t)y(t)d̂∗(t|t− 1)]

|d̂(t|t− 1)|2
(11)

which can be recognized as the error-compensated gradient term

used in (4). When no compensation is needed, i.e., in the absence

of modeling errors, µ̂(t) is a real-valued quantity which simply

scales the gradient term. Note that (9e) can be regarded as a multi-

frequency version of (11).

An interesting and practically important application of the pro-

posed scheme is cancellation of MRI noise. MRI scanners are

widely used in medical institutions for diagnostic and research

purposes. Recently, an open-configuration MR system has been

introduced to conduct microwave coagulation therapy with the help

of near-realtime MR imaging [21]. The major problem with this

technique is, however, due to the high level of acoustic noise (ex-

ceeding 100 dB SPL) emitted by gradient coils while the images are

taken [22]. Exposure to such an intense noise is very stressful for the

surgeons and for the supporting medical staff – it causes fatigue and

makes verbal communication difficult. This may result in medical

accidents. MRI noise is difficult to cancel as it is nonstationary and

consists of a large number (> 30) of harmonic components – see

Fig. 1a. Another important feature of MRI noise is its discontinuity

in the time domain. The scanner performs sequential acquisition of

images in a loop. Every time a new acquisition is started, an abrupt

change occurs in the noise signal. The problem of active MRI noise

reduction was analyzed in many papers – see e.g. [23], [24] and

references therein.

The SONIC-based MRI noise cancellation experiment was per-

formed in a lab using commercial off-the-shelf (COTS) equipment.

The hardware platform, depicted in Fig. 2, was built on the basis

of Texas Instrument’s DSK6713 evaluation kit. The DSK board fea-

tures TMS320C6713 DSP processor clocked at 225 MHz, 512 kB

FLASH memory, 16 MB SDRAM and high quality, 24-bit stereo

audio codecs (input and output). In addition to the DSK, we used

the DBX-RTA-M microphone to measure the system output, two

power amplifiers, and custom high-power loudspeakers – one used

as a source of the noise (which was recorded, using an optical micro-

phone, in the MR room of the Shiga University of Medical Science,

Japan) and another one used to cancel disturbance.

The following settings were adopted: cµ = 0.0002, ρ =
0.9999, γω = 5 · 10−4, γα = 25 · 10−6. Additionally, a simple

safely feature was added in the form of a bound on the magnitude of

estimation gains µ̂k(t), which was set to 0.0015. The total number

of cancelled harmonics was equal to K = 24. The initial frequency

estimate was set to ω̂0(0) = 0.0556 rad/Sa (which, under 8 kHz

sampling used in the system, corresponds to 70.8 Hz).

Fig. 1b shows the steady-state power spectral density of the sig-

nal recorded by the error microphone under the operation of SONIC

equipped with the multiple-frequency version of the ANF algorithm

(4). The analogous results obtained for the controller (11) are de-

picted in Fig. 1c. It is clear that the ACF-based controller is much

more effective in suppressing signal harmonics than ANF-based con-

troller, even though both algorithms used the same starting values.

Even though in terms of sound perception the improvement is sig-

nificant, it is difficult to quantify this effect since all SNR-type per-

formance measures, dominated by the strongest harmonics, are not

trustworthy. Some sort of an agreeable perceptual “measure of re-

lief” should be worked out and used instead. The failure of the ANF-

based algorithm can be explained by its poor frequency matching ca-
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Fig. 1. Power spectral density of MRI noise: before cancellation

(a), after cancellation using the ANF-based SONIC (b), and after

cancellation using the ACF-based SONIC (c).

Fig. 2. Block diagram of the cancellation system.

pabilities – after some initial period the algorithm locks on dominant

harmonics, leaving the remaining ones unattenuated.

4. RELATION TO PRIOR WORK

The paper extends the results presented in [1] and [10] to multihar-

monic signals. To the best of our knowledge, the proposed adaptive

comb filter is the first statistically efficient fundamental frequency

tracker – when optimally tuned it reaches (under conditions specified

in the paper) the Cramér-Rao-type lower tracking bound that limits

tracking behavior of any adaptive comb filter. So far the analogous

algorithms were only available for nonstationary single-harmonic

signals [11], [12] and for stationary multiharmonic signals [2].
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