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ABSTRACT

In this work, the convergence and tracking behavior of the
ε−normalized sign regressor least mean fourth (NSRLMF)
algorithm are analyzed in the presence of white and corre-
lated Gaussian data. Furthermore, the stability bound on the
step-size of the ε−NSRLMF algorithm to ensure convergence
in the mean, which also leads us to the mean convergence
of the ε−normalized sign regressor least mean mixed-norm
(NSRLMMN) algorithm is derived. Finally, simulation re-
sults are conducted to confirm the validity and performance
of the proposed adaptive algorithm for both white and corre-
lated Gaussian regressors.

Index Terms— LMF, NLMF, SRLMF, NSRLMF, Con-
vergence, Tracking.

1. INTRODUCTION
The normalized least mean fourth (NLMF) algorithm was in-
troduced for two reasons [1]–[2]. First, to get better conver-
gence rate as compared to the traditional least mean fourth
(LMF) algorithm [3]. Second, to overcome the convergence
dependency of the LMF algorithm on the input data correla-
tion statistics.

On the other hand, the sign regressor least mean fourth
(SRLMF) algorithm, which is based on clipping of the input
data, was introduced in order to reduce the complexity of the
LMF algorithm [4]. Then, it was also observed that the LMF
and SRLMF algorithms converge at an almost identical rate
for the case of real-valued data. However, the convergence
behavior of both of these algorithms depends on the input data
correlation statistics [3]–[4].

Motivated by the advantages of sign adaptive filters and
NLMF algorithm as mentioned above we introduced the nor-
malized version of the SRLMF algorithm and performed its
steady-state analysis in [5]. In the present paper, the conver-
gence and tracking behavior of the ε−NSRLMF algorithm is
analyzed and very well supported by simulations.

The remainder of the paper is organized as follows. In
Section 2, a brief description of the ε−NSRLMF algorithm
is provided, while in Section 3, the tracking analysis of the

ε−NSRLMF algorithm is derived. Section 4 deals with the
convergence analysis of the proposed algorithm. Simulation
results are reported in Section 5 to validate the theoretical
findings. Finally, Section 6 concludes the paper.

2. THE ε−NSRLMF ALGORITHM
The weight update recursion of the ε−NSRLMF algorithm is
given by the following expression:

wi = wi−1 +
µ

ε + ||ui||2H
sign[ui]Te3

i , i ≥ 0, (1)

where wi is the updated weight vector, µ is the step-size, ui is
the regressor vector, ε is a small positive constant to avoid di-
vision by zero when the regressor is zero, ei is the estimation
error, ||ui||2H = uiH[ui]uT

i , H[ui] is some positive-definite
Hermitian matrix-valued function of ui defined by

H[ui] = diag
{

1
|ui1 |

,
1

|ui2 |
, . . . ,

1
|uiM |

}
, (2)

M is the filter length and sign[ui]T = H[ui]uT
i .

3. TRACKING ANALYSIS
Tracking analysis of the ε−NSRLMF algorithm can be ex-
tended in a straightforward way using its mean-square anal-
ysis presented in [5] as there are only slight differences. We
will therefore be brief in this section.

Here, let us assume that the data {di,ui} satisfy the fol-
lowing conditions of the nonstationary data model [6]:

A.1 There exists an optimal weight vector wo
i such that di =

uiwo
i + vi, where di is the desired sequence and vi is

the noise sequence with variance σ2
v .

A.2 The weight vector varies according to the random-walk
model wo

i = wo
i−1 + qi, and the sequence qi is in-

dependent and identically distributed (i.i.d.) with co-
variance matrix Q. Moreover, qi is independent of
{vj ,uj} for all i, j.

A.3 The initial conditions {w−1,wo
−1} are independent of

the zero mean random variables {di,ui, vi,qi}.
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For the adaptive filter of the form in (1), and for any data
{di,ui}, assuming filter operation in steady-state, the follow-
ing variance relation holds [6]:

µE
[||ui||2Hg2[ei]

]
+ µ−1Tr(Q) = 2E [eai

g[ei]] ,
as i →∞, (3)

where g[ei] denotes some function of ei and for the ε−NSRLMF
algorithm g[ei] is readily given by

g[ei] =
e3
i

ε + ||ui||2H
,

=
1

ε + ||ui||2H
{e3

ai
+ v3

i + 3e2
ai

vi + 3eai
v2

i }, (4)

eai = ui(wo
i − wi−1) is the a priori estimation error, the

estimation error is

ei = eai + vi, (5)

and finally

E[||ui||2H] = E[uiH[ui]uT
i ]. (6)

In [5], the following expressions for the terms E [eaig[ei]] and
E

[||ui||2Hg2[ei]
]

were derived:

E [eaig[ei]] = E
[

e4
ai

ε + ||ui||2H

]
+ 3σ2

vE
[

e2
ai

ε + ||ui||2H

]
, (7)

E
[||ui||2Hg2[ei]

] ≈ 6E
[ ||ui||2Heai

(ε+||ui||2H)2

]
E[v5

i ]

+15E
[
||ui||2He2

ai

(ε+||ui||2H)2

]
ξ4
v + E

[
||ui||2H

(ε+||ui||2H)2

]
ξ6
v , (8)

where ξ4
v = E[v4

i ] and ξ6
v = E[v6

i ] denote the fourth- and
sixth-order moments of vi, respectively. Finally, substituting
expressions (7) and (8) into (3) we get

µZ1ξ
6
v + µ−1Tr(Q) = (6σ2

vZ2 − 15µZ1ξ
4
v)E[e2

ai
], (9)

where Z1 and Z2 are defined, respectively, as

Z1 , E
[ ||ui||2H
(ε + ||ui||2H)2

]
, (10)

Z2 , E
[

1
ε + ||ui||2H

]
. (11)

Therefore, the expression for the tracking excess-mean-
square error (EMSE) ζ = E[e2

ai
] for the ε−NSRLMF al-

gorithm is given by

ζ =
µZ1ξ

6
v + µ−1Tr(Q)

(6σ2
vZ2 − 15µZ1ξ4

v)
. (12)

Consequently, the optimum step-size of the ε−NSRLMF al-
gorithm can be obtained by minimizing (12) with respect to µ
and can be shown to be

µopt =

√
Tr(Q)

ξ6
v

[
25(ξ4

v)2Tr(Q)
4σ4

v(Z2)2ξ6
v

+
1
Z1

]
− 5ξ4

vTr(Q)
2σ2

vZ2ξ6
v

. (13)

Finally, the corresponding minimum value of the tracking
mean-square error (MSE) of the ε−NSRLMF algorithm is
derived derived straight forward from (12) and is given by

E
[
e2
i

]
=

µoptZ1ξ
6
v + µ−1

optTr(Q)
(6σ2

vZ2 − 15µoptZ1ξ4
v)

+ σ2
v . (14)

4. CONVERGENCE ANALYSIS
To carry out the convergence analysis of the ε−NSRLMF al-
gorithm we rely on the following assumptions [2]:

A.4 The noise sequence vi is independent of uj for all i, j
and both sequences have zero mean.

A.5 The weight error vector w̃i (defined below) is indepen-
dent of the input uj for all i, j.

Subtracting both sides of (1) from wo
i we get

w̃i = w̃i−1 − µ

ε + ||ui||2H
sign[ui]Te3

i , (15)

where the weight error vector w̃i is given by

w̃i = wo
i −wi. (16)

We know that, the desired sequence di is given by

di = uiwo
i + vi, (17)

and the estimation error ei is given by

ei = di − uiwi−1. (18)

Then substituting (16) and (17) into (18) and expanding the
term e3

i , we get

e3
i = (uiw̃i−1)3 + v3

i + 3(uiw̃i−1)2vi + 3uiw̃i−1v
2
i . (19)

At convergence [2], the following holds:

(uiw̃i−1)3 ≤ uiw̃i−1. (20)

Since (uiw̃i−1)3 is a convex function for uiw̃i−1 ≥ 0, the
above inequality is always true as long as uiw̃i−1 ≤ 1.
Therefore, (19) can be approximated by

e3
i ≈ uiw̃i−1 + v3

i + 3(uiw̃i−1)2vi + 3uiw̃i−1v
2
i . (21)
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Substituting (21) into (15) we get

w̃i = w̃i−1 − µ

ε + ||ui||2H
sign[ui]T

[
uiw̃i−1 + v3

i

+3(uiw̃i−1)2vi + 3uiw̃i−1v
2
i

]
,

=
[
I− µ

ε + ||ui||2H
uisign[ui]T(1 + 3v2

i )
]
w̃i−1

−µsign[ui]T

ε + ||ui||2H
[v3

i + 3(uiw̃i−1)2vi]. (22)

Taking the expectation of both sides of (22) under the above-
mentioned assumptions and by ignoring ε as it is very small,
we obtain

E[w̃i] =
[
I− µE

[
uisign[ui]T

||ui||2H

]
(1 + 3σ2

v)
]

E[w̃i−1]. (23)

Now, let us use the following approximation:

E
[
uisign[ui]T

||ui||2H

]
≈ E

[
uisign[ui]T

]

E[||ui||2H]
. (24)

From [4], we have

E[||ui||2H] = E
[
uisign[ui]T

]
=

√
2

πσ2
u

Tr(R). (25)

Upon substituting (24) and (25) into (23), we have

E[w̃i] =
[
1− µ(1 + 3σ2

v)
]
E[w̃i−1]. (26)

From (26), it is easy to show that the mean behavior of the
weight error vector, that is E[w̃i], converges to the zero vector
if the step-size µ is bounded by:

0 < µ <
2

1 + 3σ2
v

. (27)

Note that the step-size bound of the ε−NSRLMF algorithm
in (27) is the same as that obtained for the NLMF algorithm
in [2]. It is clear from (27) that the upper bound on the step-
size of the ε−NSRLMF algorithm no longer depends on the
maximum eigenvalue, λmax, of the input data autocorrelation
matrix as was in the case for the SRLMF algorithm [4].

In [7], it was mentioned that the step-size bound of the
ε−NSRLMMN algorithm can be obtained by combining the
step-size bounds of the ε−NSRLMS and ε−NSRLMF algo-
rithms. This is very clear from the fact that the ε−NSRLMMN
algorithm reduces to ε−NSRLMF and ε−NSRLMS algo-
rithms when the mixing parameter, δ, takes the value 0 and 1,
respectively. Therefore, by utilizing equation (27), the mean
convergence of the ε−NSRLMMN algorithm can now be
approximated by:

0 < µε−NSRLMMN < 2δ +
2(1− δ)
1 + 3σ2

v

. (28)

5. SIMULATION RESULTS
Several simulation results are conducted to corroborate the
theoretical findings in an unknown system identification sce-
nario. For this purpose, ε = 10−6 and M = 5 have fixed
throughout this study. In Figures 1-2, the variance of the
Gaussian noise sequence qi in the random-walk model is
fixed at σ2

q = 10−8. Moreover, the correlated data can be
obtained in the same way as was done in [7].

Figures 1-2 depict the tracking MSE of the ε−NSRLMF
algorithm using correlated and white Gaussian regressors, re-
spectively. In these figures, the MSE is depicted as a func-
tion of the step-size for a signal-to-noise ratio (SNR) of 20
dB under an additive white Gaussian noise (AWGN) environ-
ment. It is seen in Figure 1 that the simulation results are in
a close match with the analytical results for values of µ up
to 0.5. A zoom into the region around µ = 0.1 in Figure 1
shows that the tracking MSE possesses a minimum value of
0.01006151 at µ = 0.114, which are in excellent agreement
with the corresponding theoretical values of 0.01005815 and
µopt = 0.1143 obtained from expressions (14) and (13), re-
spectively. However, the simulation and analytical results are
found to be in reasonable agreement for white Gaussian data
as depicted in Figure 2.
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Fig. 1. Theoretical and simulated tracking MSE of the
ε−NSRLMF algorithm using correlated Gaussian regressors.

Finally, the results in Figures 3-4 compare the conver-
gence behavior of the ε−NSRLMF and ε−NLMF algorithms
in AWGN and uniform noise environments, respectively. In
these figures, the convergence curves are plotted for both cor-
related and white Gaussian data at an SNR of 10 dB. As can
be seen from these figures, the ε−NLMF algorithm outper-
forms the ε−NSRLMF algorithm with correlated Gaussian
input. However, the performance of both algorithms is found
to be similar in white Gaussian data.

6. CONCLUSIONS
In this work, expressions are derived for the tracking MSE
and optimum step-size of the ε−NSRLMF algorithm. A
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Fig. 2. Theoretical and simulated tracking MSE of the
ε−NSRLMF algorithm using white Gaussian regressors.
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Fig. 3. Comparison of the MSE learning curves of ε−NLMF
and ε−NSRLMF algorithms in AWGN environment.

sufficient condition for the convergence in the mean of the
ε−NSRLMF algorithm is also derived and is found to be the
same as that of the NLMF algorithm. It is also shown that the
upper bound on the step-size of the ε−NSRLMF algorithm
depends on the noise variance only and is independent of
the input data correlation statistics. As a by-product of this
work, the mean convergence of the ε−NSRLMMN algorithm
is also obtained. Finally, a close match between analytical
and simulation results for correlated Gaussian data than white
Gaussian data is obtained. Moreover, the effect of clipping
on the performance of the ε−NSRLMF algorithm is found
to be more evident for correlated Gaussian data than white
Gaussian data.

Current work is devised for the recently newly version of
the NLMF algorithm [8]. Similarly, as was done in this work,
future work is extending the presented idea to that in [8] and
eventually compare their results. Due to the nature of the nor-
malization in [8], it is expected that the analytical approach
will be very involved.
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Fig. 4. Comparison of the MSE learning curves of ε−NLMF
and ε−NSRLMF algorithms in a uniform noise environment.
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