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ABSTRACT

We analyze the learning curves of the FXLMS algorithm us-
ing a statistical-mechanical method when the reference signal
is not necessarily white. We treat the nonwhite reference sig-
nal by introducing the correlation function of the signal to the
method proposed in our previous study. Cross-correlations
between the element of a primary path and that of an adaptive
filter and autocorrelations of the elements of the adaptive filter
are treated as macroscopic variables. We obtain simultaneous
differential equations that describe the dynamical behaviors
of the macroscopic variables under the conditions in which
the tapped-delay line is long. We analytically solve the equa-
tions to obtain the correlations and finally compute the mean-
square error. The obtained theory quantitatively agrees with
the results of computer simulations. The theory also gives the
upper limit of the step size in the FXLMS algorithm.

Index Terms— Filtered-X LMS algorithm, adaptive fil-
ter, active noise control, statistical-mechanical informatics,
nonwhite reference signals

1. INTRODUCTION

Recently, active noise control (ANC) has been practically
realized owing to the progress of digital signal processing
technology[1, 2, 3]. ANC is divided into two types, feedfor-
ward and feedback ANC[3]. In this paper, feedforward ANC
is considered.

The most commonly used algorithm in adaptive filters is
the least-mean-square (LMS) algorithm, which was proposed
more than half a century ago[4, 5]. When we apply the LMS
algorithm to ANC, we should estimate the secondary path
beforehand and use inputs that have passed through the esti-
mated secondary path. This procedure is called the Filtered-X
LMS (FXLMS) algorithm[6].

Various methods have been proposed to theoretically an-
alyze the LMS algorithm. The principal method is to use
the independence assumption[7, 8, 9]. The FXLMS algo-
rithm has also been analyzed on the basis of the independence
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assumption[10, 11, 12, 13]. In this assumption, successive in-
put vectors of the tapped-delay line are assumed to be inde-
pendently generated at each time step. However, the actual
input vector components are merely shifted to the next posi-
tion. Hence, each input vector is strongly related to the pre-
vious one and the vectors are thus not independent. Owing
to this fact, analytical results based on the independence as-
sumption cannot precisely and generally explain experimental
results[5].

There are various methods based on assumptions other
than the independence assumption. In [13, 14, 15, 16], the
step size is assumed to be small. In [17, 18, 19], it is assumed
that the correlation between the input signal vectors is more
dominant than the correlation between the weight vector of
the adaptive filter and the input signal vectors. In [20, 21, 22],
it is assumed that the input signal is sinusoidal. In [23], it is
assumed that both the unknown system and the adaptive filter
have a small number of taps. Thus, a general theory for the
FXLMS algorithm has not been given in the literature even
though this algorithm is widely used.

Meanwhile, numerous powerful analytical and numeri-
cal methods have been developed in statistical mechanics.
The field in which these methods are used to solve prob-
lems in information technology or information science is
called statistical-mechanical informatics[24], which is pro-
ducing significant results in many fields, such as associative
memory models, error-correcting codes, wireless communi-
cations, image processing, statistical learning, and so forth.
In this paper, we theoretically analyze the learning curves of
the FXLMS algorithm by applying a statistical-mechanical
method when the reference signal is not necessarily white.

2. ANALYTICAL MODEL OF FXLMS ALGORITHM

Figure 1 shows a block diagram of the ANC system con-
sidered in this paper. The primary path P is represented
by an Np-tap FIR filter. Its coefficient vector is p =
[p1,p2,---,pnp]T. Each coefficient p; is generated from
the stochastic process given by (p;) = 0, (p;p;) = 0;,; and
is time-invariant. Here, (-) denotes expectation and J denotes
the Kronecker delta.
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Fig. 1. Block diagram of the ANC system.

The adaptive filter H is an N-tap FIR filter. Its coeffi-
cient vector is h™ = [h7*, b3, ..., k7T, where m denotes
the time step and N > Np. The 1n1t1a1 value h? of each
coefficient is generated from the stochastic process given by
(h) = 0, (2H2) = 4.

The input signal ™ is drawn from a distribution with

(z™)y =0, (g™z™ %) = g2 /N. (1)

The correlation function (1) implies that the input sig-
nal is white if 02 = 0 (k # 0) and that the model in-
cludes the case of nonwhite input signals. The input sig-
nal is shifted through the tapped-delay line. Therefore,
the tap input vectors of the primary path and adaptive fil-
ter are % = [z™,z™ L . am NPHT and 2™ =
[z, zm L 2™ VT respectively.  The output of
the primary path P is d™ = p’z’. On the other hand, the
output of the adaptive filter H is u™ = (h™)Tz™.

The secondary path C' is modeled by a K-tap FIR filter.
Its coefficient vector is ¢ = [c1,¢2,-..,ck]? and is time-
invariant. The output y™ of the secondary path is

K
= E cpu™ TR
k=1

The error signal e™ is generated by adding an independent
background noise £™ to the difference between d™ and y™
That is,

e =dm" —y™m™+£&m. 3)

Here, the mean and variance of {¢™ are zero and a?, respec-
tively.

The LMS algorithm is used to update the adaptive fil-
ter. Here, the coefficient vector ¢ of the secondary path is
unknown in general. Therefore, the estimated secondary
path C', which has been estimated in advance by a certain
method, is used to update the adaptive filter. This procedure
is called the FXLMS algorithm. When the estimated sec-
ondary path C' is a K-tap FIR filter and its coefficient vector
is & = [¢1,62,...,Cx]", the update obtained by the FXLMS
algorithm is

2

K
=h™+ pe™ Z ékmm_k"'l,
k=1

hm+1

“)

where p is the step size.
3. THEORY
From (2) and (3), the MSE is expressed as

K K
<(em)2> _ <(d )2> n Z Z ChCr <um—k+1um—k’+1>

k=1k'=1

— 23 (dmum Y 4 o2,

k=1

=

&)

Equation (5) includes many products of d and u including
cases where their time steps are different. To calculate these
products, we introduce the N -dimensional vectors

m __ m m m 1T .
k] _[j,17 j,2""7j,N] , J—_M,...,

M (6)
whose elements are k7", = hnTod(i—&—j—l,N)-l—l‘ That is, k;” is
the j-shifted vector of the coefficient vector h™ of the adap-
tive filter. Note that k" = h™.

In the following, the limit Np, N — oo is considered.
This condition is called the thermodynamic limit in statistical
mechanics. Here, @ = Np/N is kept constant. When the
shift number j is O(1), we can obtain

()T = (k) Tz, ™
Equation (7) is based on the fact that the shift of the tap
input vector is canceled with the shift of the elements of
the adaptive filter. Here, the effect of the edge of the adap-
tive filter can be ignored since both h™ and k}* are N-
dimensional, i.e., infinitely long, vectors. Equation (7) im-
plies that the gap j in the time direction can be replaced by
the subscript of the vector k. In addition, we introduce two

macroscopic variables defined by RT" = 1 Zfivl pik];
R?" and Q7" are the cross-

and Q7 = L SN hrkr

correlation between p and h™ and the autocorrelation of
h™, respectively. Here, note that both correlations are not
functions of the time-direction shift but functions of the
element-direction shift.

Then, we obtain <dm’3um> = aZ?i_M Riaf_j ,
<um’jum> = 02Qj, and <dm*jdm> = aaf. Here, we
have omitted the time steps of the macroscopic variables
since they do not change by O(1) in the O(1) time updates in
the model considered in this paper, as described later. We can
express the MSE (5) in terms of the cross-correlation I ; and
autocorrelation () ; as

K M K
<(6 > = ch Z (Z ck’QiUiZ_]H_k/ — 2aRiUi2+k_1
—M

k=1 k'=1

+aoh +07. (8)
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This formula shows that the MSE is a function of the macro-
scopic variables R and (). Therefore, we derive differential
equations that describe the dynamical behaviors of these vari-
ables in the following.

We first derive a differential equation for ;. When the
coefficient vector h of the adaptive filter is updated, the j-
shifted vector k; is also changed. This change can be de-
scribed as

K
EPT =k 4 pe™ Y aam i ©)
k=1

Note that the time step of the tap input vector x is shifted by j
compared with that in (4). Multiplying both sides of (9) on the

left by the N-dimensional vector [py,ps, . . ., Pan,0, . - ., 0],
~——
(1—a)N
we obtain
K
aNR"™ = aNR" + pe™ > &d™ "7 (10)
k=1

In (10), the left-hand side and the first term on the right-
hand side are O(N) and the other terms are O(1). This means
that the coefficient vector A" of the adaptive filter should be
updated O(NN) times to change R; by O(1). Therefore, we
introduce the continuous time ¢, which is the time step m nor-
malized by the tap length NV, and use it to represent the adap-
tive process[25]. If the adaptive filter is updated N dt times in
an infinitely small time dt, we can obtain Ndt equations that
are similar to (10). Summing all these equations, we obtain a
differential equation that describes the dynamical behavior of
R; in a deterministic form as follows:

dR. K K M
d—tj =) (J%’ﬂ'l Do Y, Ri"zzﬂck'j) -
k'=1 k=1 i=—M

D

Next, multiplying (4) by (9) and proceeding in the same
manner as for the derivation of the above differential equation
for R;, we can derive a differential equation for () ;, which is
given by (12), where sgn(-) is the sign function. In addition,
a=0Hy—kK,8=0(e—k",y=j+1—-Fk, and
€= —j+1— k', where ©O(-) is the step function.

The correlations for up to M shifts are considered. There-
fore, the 20 + 1 vectors {k;}, j = —M, ..., M are consid-
ered and it is assumed that R; = ); = 0 when [j| > M.
Then (11) and (12) are first-order ordinary differential equa-
tions with 3M + 2 variables, that is,

d

EZ =Gz +b,
where [Qo,---,Qurr, R_ar,-- -, Ro, - ., Ry]' and the ma-
trix G' and vector b are determined by (11) and (12). All ini-
tial values of ) ;(j # 0) and R; are equal to zero because p;,

13)

h?,and kj;(j # 0) are independently generated. Therefore,
zatt = 0is zg = [1,0,...,0]T. Using this as the initial
—_——

3M+1
condition, we can analytically solve (13) to obtain

z(t) =e% (2o =G 'e b+ G'b) (14)
[26], where eP is the matrix exponential function defined by
P=y2 &D"=I+iD+45D>+---.

4. RESULTS AND DISCUSSION

We first investigate the validity of the theory by comparison
with simulation results regarding the dynamical behaviors of
the MSE, that is, the learning curves. Figure 2 shows the
learning curves obtained theoretically in the previous section,
along with the corresponding simulation results. The corre-
lation function of the input signal is 02 = 1,07 = 0 when
k > 0 (White),and 0§ = 1,07 = 0.5,07 = Owhen k > 1
(Nonwhite). There is no background noise, that is, ag = 0.
The numbers of taps of the primary path P and the adaptive
filter H are equal,i.c.,a = Np/N = 1. The secondary path
C is a two-tap FIR filter, that is, K = 2, and its coefficients
are ¢c; = c2 = 1. The estimated secondary path has no error,
in other words, ¢; = ¢ = 1.

100 r7e : —
Theory (White) -
(Nonwhite)
10 Simulation (White)  © ]
(Nonwhite)
a1
=
0.1
0.01
0 20 40 60 80 100
t=m/N

Fig. 2. Learning curves obtained theoretically and by simula-
tion.

In Fig. 2, the curves represent theoretical results and the
symbols represent simulation results. In the theoretical cal-
culation, the results are obtained by substituting i ; and @},
which are obtained by solving (13), into (8) in the case where
the range of the correlations considered is M = 20. In the
computer simulations, the numbers of taps of the primary path
and the adaptive filter are Np = N = 500. Ensemble means
for 1000 trials are plotted. Figure 2 shows that the theoreti-
cal results agree with the simulation results including the dif-
ference between the behaviors for white and nonwhite input
signals. It is also shown that the upper limit of the step size
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k=1 i=—M
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v for white input signals is larger than 0.4, whereas that for
nonwhite input signals is smaller than 0 4.
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Fig. 3. Relationship between step size y and steady-state
MSE obtained theoretically and by simulation.

We next investigate the upper limit of the step size y in de-
tail. This is very important from the practical viewpoint. We
compare the derived theory and simulation results in terms of
the relationship between the step size p and the steady-state
MSE. The number of taps and the coefficient vector of the
secondary path C' are K = 2 and ¢ = [1,1]7, respectively.
The secondary path estimation has no error, that is, ¢ = c.
The correlation function of the input signal is 3 = 1,03 = 0
when k > 0 (White), and 62 = 1,0} = 0.5,07 = 0 when
k > 1 (Nonwhite). The variances of the background noise
are ag = 0,0.2, and 0.4. Figure 3 shows the results obtained
theoretically and by simulation. In the theoretical calculation,
the ratio of the number of taps of the primary path to that of
the adaptive filter is a = 1. The range of the correlations
considered is M = 20 and MSEs at ¢t = 10 are plotted. In
the computer simulations, the numbers of taps of the primary
path and the adaptive filter are Np = N = 200 and the means
of the 200 squared errors from ¢ = 900 to ¢ = 1100 are plot-
ted. Symbols and error bars represent medians and standard
deviations, respectively. The theoretical results agree with the
simulation results reasonably well in Fig. 3. This agreement
indicates that the derived theory can explain the simulation
results regarding the upper limit of the step size p for which
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the MSE converges when the input signals are both white and
nonwhite.

Although the case where the secondary path C' is a two-
tap filter was investigated, the obtained theory is effective
when C' has a larger number of taps.

5. CONCLUSIONS

We have analyzed the learning curves of the FXLMS algo-
rithm using a statistical-mechanical method when the refer-
ence signal is not necessarily white. The obtained theory
quantitatively agrees with the results of computer simulations.
The theory also gives the upper limit of the step size. The in-
dependence assumption and other assumptions that have often
been used in the literature are not used in the theory derived in
this paper. The principal assumption used is that IV is large.

The investigation of the case where the estimated sec-
ondary path has some error, especially the relationship with
the 90 degree condition, is an important future work.

6. RELATION TO PRIOR WORK

Our previous theory[27, 28] treated only white reference sig-
nals. This assumption was a severe limitation since the refer-
ence signal to be canceled is not necessarily white. Therefore,
in this paper, we have generalized the previous theory to the
case where the reference signal is not necessarily white by
introducing the correlation function of the signal.
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