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ABSTRACT 
 
This paper proposes a new adaptation algorithm named 
normalized correlation-Newton (NC-Newton) algorithm 
and a novel variable q-norm control method (NC-Newton-
Varq-norm) for complex-domain adaptive filters.  First, 
stochastic models are presented for two types of impulse 
noise intruding adaptive filters: one is present in observation 
noise and another at filter input.  After reviewing q-norm 
and NC-Newton algorithm, we propose a variable q-norm 
control method.  Analysis of the NC-Newton-Varq-norm 
algorithm is developed for theoretically calculating transient 
and steady-state convergence behavior.  Through 
experiment with some examples, we demonstrate 
effectiveness of the proposed variable q-norm control 
method in improving filter convergence speed while 
preserving robustness of the NC-Newton algorithm in 
impulsive noise environments.  Good agreement between 
simulated and theoretical convergence behavior validates 
the analysis. 
 

Index Terms— Adaptive filter, normalized correlation,  
impulse noise,  Newton’s method, variable q-norm control. 
 

1. INTRODUCTION 
 
Adaptive filtering is one of the core technologies that play a 
crucial role in implementing essential functions and 
realizing required performance in many latest info/commun 
systems. 
    The LMS algorithm for adaptive filters is most 
intensively studied and most extensively applied to practical 
systems [1], [2].  The LMS algorithm has born many 
“children” such as the NLMS algorithm, the sign algorithm 
(SA), the sign-sign algorithm (SSA), and others [3]-[7]. 
    Although the LMS algorithm is attractive, it is known to 
be vulnerable to impulse noise that intrudes adaptive 
filtering systems [8], [9].  We identify two types of impulse 
noise: one is present in observation noise and another at 
filter input.  The latter type of impulse noise is sometimes 
found in such applications as “active noise cancellation.” 
    In the real-number domain, the SSA is highly robust 
against both types of impulse noise stated above.  In the 
complex-number domain, least mean modulus (LMM) 
algorithm and correlation phase algorithm (CΦA) are robust 
algorithms [10], [11].  The author proposed a “normalized” 
type adaptation algorithm named normalized correlation 

(NC) algorithm that is also highly robust against both types 
of impulse noise [12]. 
    When the reference input is highly correlated, the filter 
convergence becomes considerably slower.  To solve this 
problem, we introduce an estimate of the inverse covariance 
matrix in the tap weight adaptation.  Simple recurrence 
calculation of the inverse covariance matrix is possible 
using the well-known Newton’s method.  The least mean 
modulus-Newton (LMM-Newton) algorithm is the LMM 
algorithm combined with the Newton’s method [13].  
Likewise, normalized correlation-Newton (NC-Newton) 
algorithm effectively improves the filter convergence for a 
correlated input.  However, still faster convergence for the 
NC-Newton algorithm is desired. 
    In general, for “normalized” type algorithms, the 
normalizing factor can be “q-norm (or lq norm)” of the filter 
input.  q-norm of a vector x, denoted by || x ||q, is calculated 
as [ ∑l=0 

N–1| x(l) |q ]1/q for q ≥ 1.  For the NLMS algorithm, 
the normalizing factor is “2-norm square.” 
    In this paper, we propose NC-Newton algorithm with 
normalization by q-norm of the filter input, and a novel 
variable q-norm control method to further improve the filter 
convergence, yielding “NC-Newton-Varq-norm” algorithm. 
 

2. IMPULSE NOISE MODELS 
 
2.1. Impulsive Observation Noise 
 
Impulse noise found in the additive observation noise is 
often modeled as contaminated Gaussian noise (CGN) that 
is mathematically a combination of two independent 
Gaussian noise sources, i.e., noise source #0 with variance 
σ2
ν
(0) and probability of occurrence pν

(0), and noise source #1 
with variance σ2

ν
(1) and probability of occurrence pν

(1).  Note 
that pν

(0) + pν
(1) = 1 holds.  Usually, σ2

ν
(1) >> σ2

ν
(0) and pν

(1) < 
pν

(0).  For “pure” Gaussian noise, pν
(1) = 0 and σ2

ν
 = σ2

ν
(0) 

[14]. 
 
2.2. Impulse Noise at Filter Input 
 
A “noisy” filter input b(n) at time instant n with impulse 
noise added to the reference input a(n) is given by b(n) = 
a(n) + τ(n) νa(n), where τ(n) is an independent Bernoulli 
random variable taking 0 with probability of occurrence 1 – 
pνa and 1 with pνa.  The impulse noise νa(n) itself is an 
independent White & Gaussian noise with variance σ2

νa. 
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3. q-NORM AND NC-NEWTON ALGORITHM 

 
3.1. q-Norm 
 
Let x = [x(0), ···, x(k), ···, x(N–1)]T be a complex-valued 
vector.  q-norm (or lq norm) of the vector x is defined by  
                       || x ||q = [ ∑l=0

N–1 | x(l) |q ]1/q,                      (1) 
where | · | is modulus of a complex number and q ≥ 1.  In (1), 
typical values of q for practical use are: q = 1, 2 and ∞.  || x 
||2 is Euclidean norm and || x ||∞ is called “infinity-norm.”  It 
can be shown that the infinity-norm is calculated as || x ||∞ = 
max{| x(0) |, ···, | x(k) |, ···, | x(N–1) |}. 
    Next, let x(·) be a complex-valued zero-mean Gaussian 
process, colored in general, with covariance matrix Rx = 
E(xxH)/2 and unit variance.  Let us denote expectation of q-
norm of x and its square by γ(q) = E(|| x ||q) and γ2(q) = E(|| x 
||q

2).  Note that γ(q) or γ2(q) depends on N and the 
covariance matrix Rx.  Generally, it is difficult to calculate 
γ(q) or γ2(q) analytically.  However, we find γ(1) = (π/2)1/2N 
and γ2(2) = 2N. 
    For a general value of q, we run simulation to calculate 
ensemble average <|| x ||q> and <|| x ||q

2> for γ(q) and γ2(q), 
respectively.  An example of simulation results is given 
below, where N = 32 and x(·) is an AR1 Gaussian process 
with regression coefficient  η = 0.9. 

Table 1.  Simulation results for q-norm. 
         q      <|| x ||q>     <|| x ||q

2>    <|| x ||q>/<|| x ||q
2> 

          1     40.11        1716                  0.0234 
          2       7.773          64.00             0.121 
          4       3.703          14.45             0.256 
          8       2.756            7.980           0.345 
         32      2.436            6.230           0.391 
       128      2.417            6.132           0.394 
         ∞       2.416            6.128           0.394 
    In Table 1, the ratio <|| x ||q>/<|| x ||q

2> ≈ γ(q)/γ2(q) 
increases as q increases to converge to an upper bound. 
 
3.2. NC-Newton Algorithm 
 
First, we define correlation between the error and the 
reference input at the kth tap as  

zk(n) = e*(n) a(n–k). 
Then, we form a correlation vector  

z(n) = e*(n) a(n),  
where a(n) =[a(n), ···, a(n–k), ···, a(n–N+1)]T is the 
reference input vector.  Using this vector z(n), we derive a 
tap weight update equation for the NC algorithm as given 
by  

c(n+1) = c(n) + αc z(n) / || z(n) ||q  [12],  
where c(n) is the tap weight vector and αc is the step size. 
    The error signal is given by e(n) = (n) + ν(n).  (n) = 
θH(n)a(n) is the excess error, θ(n) = h – c(n) is the tap 
weight misalignment vector, h is the response vector of an 
unknown system, and ν(n) is the additive observation noise. 
 

 
    When the reference input a(n) is highly correlated, the 
filter convergence becomes considerably slow.  For “de-
correlation,” we calculate an estimate of the inverse 
covariance matrix Ra

–1 of the input.  In this paper, as in [13], 
we apply the well-known Newton’s method to calculation 
of Ra

–1, yielding NC-Newton algorithm. 
    The tap weight update equation is given by  
               c(n+1) = c(n) + αc P(n) z(n) / || z(n) ||q,             (2) 

where P(n) is the estimate of Ra
–1 recurrently calculated as  

P(n+1) = (1+ρ)P(n) – ρ g(n)gH(n)/[|| a(n) ||2
2/N]  

with g(n) = P(n)a(n) and  ρ being an adaptation coefficient. 
 

4. NC-NEWTON ALGORITHM 
WITH VARIABLE CONTROL OF q-NORM 

 
As is demonstrated in Section 6, when q = 1 for the q-norm, 
the steady-state error for the NC-Newton algorithm can be 
made small enough by selecting an appropriate step-size 
value, but the filter convergence becomes very slow as a 
trade-off.  However, when we select q = ∞, the filter 
convergence with the same step size is much faster, but the 
steady-state error becomes very large (see Fig. 2). 
    The results above inspire us to vary the value of q so that 
initially q = ∞ (or 128) and q = 1 close to the steady state.  
Based on this idea, we propose a novel “variable q-norm” 
control method to combine with the NC-Newton algorithm. 
    In (2), q is now time-variant as given by  

q(n) = q0 + (q∞ – q0) exp[–gsPs
m(n)],  

where gs is a coefficient, Ps(n) is an “error variance 
estimator” and m (≥1) is a power of Ps(n).  Practically, we 
select q0 = 128, q∞ = 1 and m = 2.  The estimator Ps(n) is 
calculated by Ps(n) = || s(n) ||2

2 where s(n+1) = (1–ρs)s(n)+ρs 

P(n) z(n)/|| z(n) ||q(n) and ρs is a leakage factor.  We name 
this algorithm NC-Newton-Varq-norm algorithm. 
 

5. ANALYSIS 
 
In this section, we develop analysis of the NC-Newton-
Varq-norm algorithm.  Due to space limitations, detailed 
derivation process cannot be fully described, but only main 
results are summarized.  However, the validity of the 
analysis will be verified through experiment in Section 6. 
 
5.1. Assumptions 
In the analysis, Long Filter Assumption (N>>1) and 
Independence Assumption are adopted.  Further, we assume 
that the matrix P(n) is uncorrelated with the correlation z(n). 
 
5.2. Difference Equations for Tap Weight Misalignment 
 
First, from (2), we find an update equation for the tap 
weight misalignment vector as  
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 θ(n+1) = θ(n) – αc P(n) e*(n) / | e(n) | · a(n) / || a(n) ||q, (3) 
From (3), defining m(n) = E[θ(n)] and K(n) = E[θ(n)θH(n)], 
we derive the following difference equations:  

m(n+1) = m(n) – αc p(n) 
K(n+1) = K(n) – αc[V(n)+VH(n)] + α2

cT(n), 
where p(n) = E[P(n)]W(n)m(n), V(n) = E[P(n)]W(n)K(n), 
T(n)=E[P(n)]TaE[P(n)], W(n)≈(π/2)1/2Ra/σeCGN(n)/[γ(q)σa], 
Ta ≈ 2Ra/[γ2(q)σ2

a], σeCGN(n) = 1 / ∑i=0
1pν

(i)/σe
(i) and σ2

e
(i ) =  

ε(n)+σ2
ν
(i ) for a Gaussian process a(n).  Here, ε(n) = E[|(n) 

|2]/2 = tr[RaK(n)] is excess mean square error (EMSE). 
 
5.3. Newton’s Method 
We can derive a difference equation for E[P(n)] as  

E[P(n+1)] = (1+ρ)E[P(n)] – ρE[P(n)]QaE[P(n)], 
where, referring to [15], we calculate  

Qa = 2N ∫0
∞ u |A(u)|–1 D(u) du  

with D(u) = A–1(u) Ra and A(u) = I + u2 Ra. 
 
5.4. Variable q-Norm Control Method 
We calculate expectation of “error variance estimator” as  

E[Ps(n)] = E[|| s(n) ||2
2], 

where for E[s(n)] and E[||s(n)||2
2] we have  

                  E[s(n+1)] = (1– ρs)E[s(n)] + ρs p(n) and  
E[||s(n+1)||2

2] = (1– ρs)
2 E[||s(n)||2

2] 
+ 2(1–ρs)ρs p

H(n)E[s(n)] + ρ2
s tr[T(n)]. 

 
5.5. Steady-State Solution 
Assuming filter convergence as n→∞, with E[P(∞)] = Qa

–1 
and q(∞) = 1, we derive the following equation to solve the 
steady-state EMSE iteratively. 

ε(∞) ≈ αc(2/π)1/2[γ(1)/γ2(1)] tr(RaQa
–1)/σa · σeCGN(∞). 

 
6. EXPERIMENT 

 
In this section, we present results of experiment, where we 
calculate simulated and theoretical filter convergence 
behavior for NC, NC-Newton, NC-Newton-Varq-norm and 
NLMS algorithms.  The simulation result is an ensemble 
average of squared excess error <|(n)|2>/2 over 1000 
independent runs of filter convergence. 
    Four examples are carefully prepared.  In the examples, N 
= 32, the reference input is an AR1 Gaussian process with 
variance σ2

a = 1 (0 dB) and regression coefficient η = 0.9 or 
0.  The step size is αc = 2–9.  For Newton’s method, ρ = 2–8.  
In Examples #1 to #3, noise is “pure” Gaussian noise with 
pν

(1) = 0; σ2
ν
 = 0.01 (–20 dB) and no impulse noise is present 

at filter input. 
    Example #1  q-norm: q = 1 
                        NC, NC-Newton and NLMS algorithms 
                        NLMS algorithm: η = 0 (W&G) and  
                                                    step size αc = 2–6  
    Example #2  q-norm: q = 1 and 128 
                        NC-Newton algorithm 
 
 

    Example#3  NC-Newton-Varq-norm algorithm 
                        variable q-norm control: q0 = 128, q∞= 1,  
                                                              gs = 2, ρs = 2–11 
    Example #4  NC-Newton-Varq-norm and NLMS  
                         algorithms 
                         variable q-norm control: same as above 
                      NLMS algorithm: same as in Example #1 
                         Case 1: “pure” Gaussian noise  
                                     no impulse noise at filter input 
                         Case 2: CGN  σ2

ν
(0) = 0.01; pν

(0) = 0.9   
                                               σ2

ν
(1) = 10   ; pν

(1) = 0.1 
                         Case 3: “pure” Gaussian noise 
                                      impulse noise at filter input  
                                           σ2

νa = 1000 (+30 dB); pνa = 0.1 
                         Case 4: CGN as in Case 2 
                                     impulse noise at filter input  
                                              as in Case 3 
    For Example #1, filter convergence curves for NC 
algorithm are depicted in Fig. 1 for q = 1. Clearly, we 
observe that the convergence for η=0 (W&G) is much faster 
than that for a highly correlated input (η=0.9).  For NC-
Newton algorithm with η=0.9, the convergence becomes as 
fast as that for NC algorithm with η=0, showing the 
effectiveness of the Newton’s method.  However, we see 
still slower convergence than for the NLMS algorithm with 
η=0 and the step size αc = 2–6 which gives ε(∞) of about –40 
dB. 
    For Example #2, convergence curves for NC-Newton 
algorithm with q = 1 and 128 are compared in Fig. 2.  Here, 
clearly the convergence for q = 128 is much faster, but the 
steady-state EMSE becomes much larger than for q = 1. 
    Fig. 3 shows filter convergence for Example #3, where 
the value of q for the q-norm is varied according to the 
proposed control method (NC-Newton-Varq-norm 
algorithm).  The figure also shows how q(n) is varied from 
the initial value 128 to the final value 1.  We observe that 
the variable q-norm control method significantly improves 
the filter convergence speed for the NC-Newton algorithm 
with a fixed q-norm (q=1). 
   In Example #4, either or both types of impulse noise are 
present for NC-Newton-Varq-norm algorithm (Cases 2 to 4).  
In Case 2, for CGN, the increase in the EMSE from that for 
Case 1 is only a fraction of dB.  For Cases 3 and 4, only 
simulation results are given.  Even though the convergence 
becomes slower (reason unknown), the steady-state EMSE 
is much smaller than that for Case 1 or 2.  These results 
demonstrate the high robustness of the algorithm against 
both types of impulse noise.  It is observed that the filter 
convergence for NC-Newton-Varq-norm algorithm is even 
faster than that for the NLMS algorithm with a W&G input, 
showing the effectiveness of the proposed method. 
    In the examples above, we observe good agreement 
between simulation and theory that validates the analysis. 
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Fig. 1.  Adaptive filter convergence (Example #1, p=1). 

 

         
Fig. 2.  Adaptive filter convergence (Example #2, p=1 & 128). 

 

         
Fig. 3.  Adaptive filter convergence (Example #3, Varq-norm). 
 

         
  Fig. 4.  Adaptive filter convergence (Example #4, Cases 1 to 4). 
 
 

7. CONCLUSION 
 
In this paper, we have proposed normalized correlation-
Newton algorithm and a novel variable q-norm control 
method.  Through analysis and experiment, effectiveness of 
the proposed NC-Newton-Varq-norm algorithm has been 
demonstrated in successfully improving the convergence 
speed while preserving the robustness against both types of 
impulse noise.  Theoretical analysis in the presence of 
impulse noise at filter input is left as a future work. 
 

8. RELATION TO PRIOR WORK 
 
In order to improve filter convergence speed for adaptation 
algorithms, many variable (or adaptive) step-size control 
methods have been proposed.  The paper by Kwong et al. 
may be the first that proposed a variable step size based on 
the error power [16].  Then, various methods have been 
proposed to improve performance in practical situations 
[17] – [20], [10] [11]. 
    Recursive least type algorithms and affine projection 
algorithms are also effective in improving the filter 
convergence [2], [21], [22].  However, for these algorithms 
computational complexity is normally very high. 
    So far, to the best of the author’s knowledge, there have 
been no other methods proposed for accelerating filter 
convergence than those stated above.  Therefore, this paper 
proposes a completely novel approach in which we aim at 
achieving faster convergence by varying the value of q for 
q-norm of the normalizing factor. 
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