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ABSTRACT

This paper describes analysis of the behaviour, and establishment of
different decomposition properties, of a previously presented modi-
fication of the empirical mode decomposition algorithm using frac-
tional Gaussian noise. Importantly, the modified algorithm, called
empirical mode decomposition-modified peak selection (EMD-
MPS), is used to explain certain aspects of the decomposition be-
haviour of EMD, providing novel insight into the domain. Finally,
the utility of EMD-MPS is demonstrated by using it for a novel
time-scale based de-trending of signals, using real-world financial
time-series as an example.

Index Terms— empirical mode decomposition, modified
peak selection, filter-bank behavior, time-scale decomposition, de-
trending

1. INTRODUCTION

Empirical mode decomposition (EMD) is a technique for decompo-
sition of non-linear and non-stationary signals into amplitude and
frequency modulated waveforms called intrinsic mode functions
(IMFs), which are obtained by adaptive extraction of all the oscil-
latory modes present in a signal. EMD is defined by an algorithm
[1], and the IMFs are extracted through a process called sifting.
The sifting process considers the oscillatory modes in the signal at
the very local time-scale, and the EMD algorithm defines steps to
extract these modes. The most local time-scale is defined by two
consecutive extrema, hence identification of all the extrema (peaks)
in the signal is an important part of the sifting process. This also
means that a change in the choice of extrema will result in limiting
the time-scale over which the sifting process allows an oscillatory
mode in the signal to pass un-decomposed. Exploiting the idea
of selective extrema selection, we previously proposed a modifica-
tion to the EMD algorithm [2], which we now call empirical mode
decomposition-modified peak selection (EMD-MPS).

In the EMD-MPS method, the sifting process uses intelligent
peak selection in short-time windows of length τ . Based on different
values of τ , different decompositions of a signal into what we term as
τ -functions are possible. Therefore the short-time window acts as an
operator which allows separation of different frequency components
in a signal into τ -functions, as determined by the length τ of the
short-time window. We establish and empirically verify a relation
between the frequency components decomposed and the value of τ .

In this paper, we analyze the behaviour of EMD-MPS by apply-
ing it to decompose fractional Gaussian noise (fGn) with different
values of the Hurst exponent, and use spectral analysis of the ob-
tained τ -functions to establish decomposition properties of EMD-
MPS, as has been done previously in the case of EMD [3, 4]. Impor-
tantly, we point out the relationship between EMD and EMD-MPS,
and show how EMD-MPS provides novel insight into EMD-based

decomposition. As a demonstration of the utility of the method,
EMD-MPS is used for a novel time-scale based de-trending of sig-
nals, using non-linear financial time-series in the form of S&P index
data as an example signal.

2. EMPIRICAL MODE DECOMPOSITION-MODIFIED
PEAK SELECTION

The sifting process in EMD-MPS uses a criterion for choosing the
extrema based on short-time windows of length τ , instead of using
a time-scale based on successive extrema, as is done in the case of
EMD. Let us define an operator W τ

i (·), i = 1...k, i ∈ Z, 0 < τ <
L,L ∈ R, which, given a signal x[n] of length L, produces the i-th
τ -function Ti, such that Ti[n] = W τ

i (x[n]). This can be explained
as choosing a short-time window length, τ , for a given signal x[n],
and selecting the highest/lowest from among the maxima/minima
within τ , from each interval τ over the whole signal length. The
maxima/minima thus identified (one maxima and minima each per
τ ) are connected using cubic splines to form the upper and lower
envelopes, and the mean of the envelopes En(mean) is calculated.
The signal x[n] is updated by subtracting the mean from it x[n] ←
x[n] − En(mean). These steps, which are similar to EMD-based
sifting, are continued till a stopping criterion is met, at which point
x[n] is reduced to a τ -function. This τ -function is subtracted from
x[n] to get a residue, which is then taken as the starting point instead
of x[n], and previous steps of the algorithm are repeated to find all
the τ -functions Ti in the signal.

Unlike IMFs extracted by the EMD algorithm, the coarse-
grained τ -functions may contain different coexisting modes of
oscillation, each superimposed on the other. This happens since
the short-time window τ sets an upper limit on the periods of the
oscillations that can be included in any given τ -function obtained
using the EMD-MPS method. This limit is determined by :

F =
Fs
τ

(1)

where Fs represents the sampling frequency. As an example for this
relation, a value of τ = 25 (in samples) corresponds to a frequency
value F = 40 samples/second for Fs = 1000 samples/second. Us-
ing this value of τ , only one peak (maxima and minima each) in each
25 sample interval will be used in the envelope formation, and the
sifting process should then decompose all F ≤ 40 samples/second
oscillatory components, and let all components with F > 40 sam-
ples/second pass through un-decomposed in one τ -function. In prac-
tice, the value of τ is qualified by a scaling constant k, such that
τ̂ = kτ , and 0 < k ≤ 1. The relation in Eq. 1 and the scaling
constant k are empirically validated in Sections 3.2 and 3.3.

Assuming Nyquist sampling, we can also see that the minimum
value of τ is given by τmin = Fs

Fmax
, where Fmax = Fs

2
. This

gives the minimum value of τ as τmin = 2. At this value of τ ,
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all the maxima and minima present in the signal are selected, and
EMD-MPS is equivalent to the EMD algorithm. This means that
all frequency components present in the signal are decomposed, and
the τ -functions are the same as IMFs. This relation of EMD-MPS
with EMD allows us to shed new light on the decomposition be-
haviour of EMD in terms of EMD-MPS. Similarly, τmax represents
the maximum possible value of τ , at which value the signal remains
un-decomposed. Therefore the range of possible values of τ can be
written as:

2 ≤ τ < Fs/Fmin (2)

where Fmin is the lowest frequency present in the signal to be de-
composed. Practically, however, the maximum value of τ will be
limited by the length of the signal (see also Sec. 3.1.2 for relation to
EMD algorithm termination).

3. DECOMPOSITION OF FRACTIONAL GAUSSIAN
NOISE USING EMD-MPS

Fractional Gaussian noise (fGn) represents a versatile model for a
full-spectrum process which is not dominated by any particular fre-
quency band, and has been previously used in studies to establish
properties of EMD [4]. The fGn of parameter H , which is the Hurst
exponent, can be defined as the zero-mean stationary Gaussian pro-
cess with autocorrelation sequence rH [k] := E{xH [n]xH [n+ k]},
rH [k] = σ2

2
(| k − 1 |2H − 2 | k |2H + | k + 1 |2H). For H = 0.5,

fGn reduces to discrete white noise, whereas other values of H cor-
respond to non-zero correlations (negative for: 0 < H < 0.5; posi-
tive for: 0.5 < H < 1).

For this work, extensive experiments were carried out with de-
composition of fGn processes using EMD-MPS with different val-
ues of τ in the operator W τ

i (·). For each of the different values of
H used (0.2,0.5.0.8, and also 0.1 and 0.9, but for fewer values of
τ ), 2500 independent samples paths of fGn were generated, each of
length 2048 samples. EMD-MPS was applied to each of the 2500
sample paths, using the following values of τ and i in the operator
W τ
i (·): i = 1, 2, 3, 4, 5, and τ = 1 − 50. This means that for each

value of τ for each sample path, a fixed five τ -functions (T1 to T5)
were obtained.

3.1. Filter bank behavior of EMD-MPS

Filter banks represent a collection of bandpass filters which can iso-
late different frequency bands in the input signal. Spectral anal-
ysis of IMFs obtained by application of EMD on white noise or
fGn has shown frequency responses similar to that of a dyadic fil-
ter bank [3, 4]. In order to test the behaviour of τ -functions Ti ob-
tained by decomposing fGn with EMD-MPS, the power spectrum
of each τ -function (T1 to T5, obtained for different values of τ )
was estimated by computing its autocorrelation function for each
fGn sequence, which was then ensemble averaged over all sequences
and then Fourier transformed. Figure 1 shows the spectra of the τ -
functions for 2 different values of τ for fGn sequences with H=0.5.

It can be observed from Fig.1 that when τ -functions display a
band-pass behavior, the pass-bands overlap in a way such that the
lower half-band of τ -function Ti represents a frequency range which
is roughly covered by the upper half-band of τ -function Ti+1, in-
dicating a quasi-dyadic filter-bank structure. In the case of EMD,
the dyadic filter-bank structure for IMFs has previously been quan-
tified by establishing an exponentially decreasing relationship be-
tween the number of zero-crossings in IMFs (as an indication of the
mean frequency in an IMF) and the IMF index number [4, 5]. Since

τ = 5 12345 τ = 10 1
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4

5

Fig. 1. Mean spectra (power spectral density in dB on y-axis, and
log2(frequency) on x-axis) of τ -functions T1 to T5. Unlabeled
numbers in the figures represent the indicies of τ -functions.

τ -functions may contain multiple modes of oscillation, the number
of zero-crossings is not a good estimate of the mean frequency. In-
stead, we used the center-frequency Fi of the τ -functions Ti with
band-pass frequency response, and found that Fi is a decreasing ex-
ponential of the τ -function index i related by Fi ∝ β−i, where β is
very close to 2. It is interesting to note that the value of β remains
close to 2 even as τ increases, i.e. the dyadic filter-bank behaviour
is demonstrated as long as τ -functions have band-pass like charac-
teristics.

One other aspect of EMD-MPS that may be noted from the filter-
bank behaviour is that the spectrum of τ -functions starts changing
from band-pass to low-pass as τ increases. For sufficiently large
value of τ , all τ -functions Ti , i > 1 demonstrate low-pass be-
haviour. This is to be expected, since as the value of τ increases,
most of the frequency components pass un-decomposed in the first
τ -function, and only low frequency components present in the fGn
sequence are decomposed into τ -functions with index i > 1. Sim-
ilarly, for a large enough increase in τ , τ -function T1 assumes ap-
proximately all-pass characteristics.

3.1.1. Horizontal and vertical behavior

Given that the decomposition of EMD-MPS and EMD is driven
by the sifting process, the similarity in behaviour is not surprising.
However, according to Eq. 1, we can relate the dyadic behaviour
across modes (τ -functions or IMFs) to a change in the value of τ . A
change in the value of frequency by half implies an increase in value
of τ by a factor of 2. This means that after the extraction of the first
mode (whether IMF or τ -function), the sifting process behaves as
if the value of τ has been doubled. To test this, the value of τ was
increased by a factor of 2 after each τ -function had been extracted,
with this change resulting in no difference in the spectra of the τ -
functions. However, increasing the value of τ by a factor of 4 after
each τ -function extraction resulted in decrease of the spectra to half
the previous value.

This suggests that the ”horizontal” (i.e. across modes) dyadic
filter-bank behaviour also exists ”vertically” (i.e. for the same mode,
but for specific values of τ ) for EMD-MPS, in that the same τ -
function Tτn displays a dyadic behaviour for different values τj ,
where τj+1 = 2τj . As for the horizontal case, the vertical behaviour
can be quantified as F τn ∝ β−τj , where β is very close to 2. This
is shown in Figure 2, which demonstrates the vertical behaviour for
values of τj starting from 2 (left figure) and 4 (right figure) using
F τ2 . The solid lines in red in both figures are the least-square fits
with a slope nearly equal to -1.

At the same time, Figure 2 reveals a very interesting phe-
nomenon for values of τ starting from 2 (left figure), which corre-
sponds to normal EMD behaviour. There is a very clear deviation of
the frequency value F 2

2 , indicating a lower value than expected. This
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implies that for EMD decomposition, the oscillatory components in
the first mode have higher frequencies than expected by the vertical
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Fig. 2. Center frequency of τ -function T2 (log2 values) obtained for
different values of τ , plotted against the index j.

model, and going from mode 1 to 2 is not the doubling of τ , but
instead amounts to a τ2 which is almost three times τ1, τ2 ≈ 3τ1,
(slight difference in values for different values of H is not discussed
here). According to Eq. 1, the frequencies to be separated and the
value of τ are inversely proportional, hence for good separation of
components with frequencies f1 and f2, we need at least f1

f2
= 1

3
.

Interestingly, this matches the separation limit required for two-tone
separation established in [6]. Using the analysis presented in this
paper, it can be said that this limit is a fundamental property of EMD
decomposition, holding beyond the two tone model.

Similarly, the difference in behaviour of the first IMF has been
mentioned previously in [7], but formulation of this behaviour in
terms of the vertical behaviour presented by EMD-MPS, as done
in the last paragraph, can provide better insight into the decompo-
sition properties of EMD, and relate it to previous results as well.
Furthermore, the vertical behaviour can be used to demonstrate and
explain the evolution of the probability density function of the ex-
tracted modes, which has been shown to be multi-modal for the first
IMF, and Gaussian-like for other IMFs in the case of EMD [3][8],
though this is not done here due to space constraints. Also, the band-
pass to low-pass change in IMF behaviour [4] can be explained keep-
ing in view IMF extraction in terms of an increase in τ as mentioned
at the end of Section 3.1.

3.1.2. Convergence of EMD algorithm

Interestingly, the convergence of the EMD algorithm may also be
explained in terms of an increase in τ . Previous studies have estab-
lished the limit for the number of IMFs that can result from applying
EMD to a signal as J ≤ log2N , where J is the number of IMFs
obtained from a signal of length N [9] . In terms of EMD-MPS
behaviour, we can formulate the extraction of an IMF as the dou-
bling of τ . Therefore, for the log2N -th IMF, the value of τ = N ,
which means no further decomposition is possible, since at most one
minima and maxima each will be selected, and the algorithm will
terminate as no envelope formation is possible. In practice, the num-
ber of IMFs can be less than log2N , because, depending on the
signal, the number of extrema can drop to less than 3 before τ = N ,
which is when most implementations are programmed to terminate
the algorithm.

3.2. Relation between decomposed frequencies and τ

To study the relationship between the decomposed frequencies and
τ , the center-frequency F2 of the second τ -function T2 is used, since

T2 maintains a band-pass behaviour over a large range of τ for the
data length used in our experiments. Fig. 3, which plots F2 against τ
forH = 0.5, demonstrates the existence of a non-linear relationship
between center-frequency Fi and τ , and can also be seen as charac-
terizing the non-linear nature of the extrema-based decomposition.

It is possible to empirically validate Eq. 1 by using the following
relation for a τ -function Ti having band-pass frequency response,
with center frequency F , ∀ n,m ∈ Z, n 6= m :

τn
τm

= x(
Fn
Fm

)−1 (3)

Eq. 1 suggests a values of x = 1 (since Fs = τF ), however x ≈ 1
in Eq. 3 holds only for values of τ > 6 (for all values ofH), whereas
0.7 ≤ x ≤ 1 for 2 ≤ τ ≤ 6, with x approaching 1 as τ increases
to a value of τ = 6. The reason for this behaviour is related to the
different vertical behaviour inherent in the decomposition using a
value of τ=2, as mentioned in Section 3.1.1.
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Fig. 3. Relationship between decomposed frequencies and τ .

3.3. Scaling factor for τ

It was previously mentioned in Section 2 that the value of τ in Eq. 1
is qualified by a scaling factor k. The scaling factor k was previously
estimated as 0.5 < k < 0.63 in [2], based on experiments with dif-
ferent test signals and different values of τ . Although this range of
k held well for simulated and real-world signals, the work in [2] re-
ported a value lower than k = 0.5 giving much better results in terms
of expected decomposition into τ -functions. Using fGn analysis as
described in this paper, we have a better estimation of the scaling
factor for τ , which is now written as (valid for all values of H):

0.25 < k < 0.44 (4)

The range of the values of k was found by estimating the center
frequency of τ -function T2 resulting from a value of τ̂ used for de-
composition, and relating it to the value of τ by τ̂ = kτ , where τ
is the value which would have resulted in the same frequency value
according to Eq. 1.

Importantly, the value of k is related to the difference in be-
haviour of τ in the same way as previously mentioned, with the value
of k = 0.44 valid for values of τ > 6, and 0.25 ≤ k < 0.44 for
2 ≤ τ < 6, with k increasing exponentially to 0.44 as τ increases
to a value of 6. The estimation of the scaling constant k also allows
us to relate the change in frequency ∆f to the change in τ between
values τ1 and τ2 as:

∆f = Fs(
k1
τ1
− k2
τ2

) (5)
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3.3.1. Validation of the scaling factor k using two-tone separation

The two tone separation problem using EMD has been studied in
[6] using a performance measure to quantify the quality of separa-
tion of the two tones using a signal model x(t; f) = cos 2πt +
cos(2πft), t ∈ R. To validate the scaling factor described in the
previous section, we use EMD-MPS to test separation of two tones,
using the same signal model, and the performance measure given by
Eq. 6. This performance measure gives a value close to zero for
good separation, and a value approaching 1 in case of poor separa-
tion between components [6], as we expect the high frequency tone
(frequency f1) to pass un-decomposed into τ -function T1, and the
low-frequency tone (frequency f2) to be decomposed into τ -function
T2.

c(f) =
||T1 − cos 2πt||2
|| cos 2πft||2

(6)
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Fig. 4. Value of the performance measure in Eq. 6 plotted against
Fτ/f2.

Fig. 4 shows the results of using EMD-MPS to decompose the
signal x(t), where the frequency ratio f of the two components has
a value 0.3. At this value of f , the performance measure c(f) should
have a value close to zero [6]. The performance measure is plotted
against Fτ/f2, where Fτ = Fs · k̂/τ , obtained using Eq. 1 and
the scaling relation τ̂ = kτ . Here τ̂ represents the actual value of
τ used to decompose the signal, and k = 0.44. EMD-MPS does
not decompose a frequency component with value greater than Fτ ,
which passes un-decomposed in τ -function T1.

For this experiment, a value of the ratio Fτ/f2 � 1 repre-
sents the case where Fτ is greater than f2, which means the tone
with higher frequency f1 passes un-decomposed in τ -function T1,
whereas the tone with frequency f2 � Fτ is decomposed into τ -
function T2. However, the ratio Fτ/f2 decreasing towards 1 and
lower represents Fτ becoming close to, and then less than f2. In this
case, a clean separation of the tones is not possible. This is depicted
in Fig. 4, where, for values of the ratio Fτ/f2 close to and less than
1, the value of performance measure increases towards 1, showing
an increasingly less effective separation of the tones.

4. TIME-SCALE BASED DE-TRENDING OF SIGNALS

EMD-MPS allows a novel time-scale based de-trending of signals,
which does not require estimation of a trend model for model-based
de-trending, or knowledge of the statistical properties of IMFs, as
is the case for EMD-based de-trending approaches proposed in lit-
erature, e.g. [10, 11]. The limitations of the energy-ratio approach
for trend extraction presented in [11] have been pointed out in [12].
Also, the work in [12] presents a seasonality checking approach to
deal with seasonal time-series to be de-trended, which includes iden-
tifying seasonal IMFs based on criteria defined on the extrema. In

contrast, EMD-MPS allows de-trending based on time-scales, hence
can de-trend seasonal time-series at different required time-scales
directly without resorting to any model. In this context, with EMD-
MPS, appropriate selection of τ representing a required time-scale
allows separation of the faster oscillations from the slowly-varying
trend, where ”slowly-varying” is controlled by the value of τ , ac-
cording to Eq. 1. In the context of the vertical behaviour, this
is equivalent to combination of lower order IMFs, which pass un-
decomposed in one τ -function, and of higher-order IMFs, which
combine to form the trend.
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Fig. 5. Time-scale based de-trending of S & P 500 index data.

Time-scale based de-trending using EMD-MPS is illustrated by
the use of real-world financial data in the form of S&P 500 daily in-
dex from November 6th, 2001 to October 11th, 2011, which consists
of 3000 data points. Values of τ representing monthly and 3-monthly
cycles were calculated in the following way. Let Fs be equal to N ,
where N represents the number of days of the daily data being de-
trended. For a 3-monthly cycle, let F be equal to 90, and the value of
τ is obtained from Eq. 1, which is scaled by k=0.44 to obtain τ̂ . This
way, the values of τ̂ representing monthly and 3-monthly cycles are
calculated, and a different trend is extracted from the S&P data for
each of the two time-scales. The trends at different time-scales, su-
perimposed with the original time-series, are shown in Fig. 5, which
illustrates the different levels of the slowly-varying detail captured
by trends at the different time-scales. It should be mentioned here
that an explicit notion of the time-scale associated with the trend
is present in the work presented in [13]. However, this time-scale
is obtained through the use of instantaneous frequencies after the
IMFs have been subjectively combined. This is different from the
EMD-MPS approach, where the notion of time-scale is built into the
decomposition.

5. CONCLUSION

In this paper EMD-MPS was presented, which is a novel variation of
the EMD algorithm, and its properties were studied by application
of EMD-MPS to fractional Gaussian noise. The relation between
the decomposed frequencies and the value of short-time window τ
was also established and validated. Also important is the estimation
of the scaling factor relating decomposed frequencies and τ . It was
also shown how EMD-MPS allows for a simple methodology for
time-scale based de-trending of signals, compared to more involved
and subjective approaches based on EMD. Next stages of the work
include improving the EMD-MPS algorithm whereby the length of
the short-time window τ is not fixed, but is chosen adaptive to the
signal.
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