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ABSTRACT

We describe a procedure for designing compactly supported or-
thonormal wavelets for finite-length wavelet transform. The de-
signed wavelets yield perfect reconstruction with a more general
class of signal extensions, including symmetric extension and zero-
padding, rather than the common periodic extension. This com-
bines the compact representation from orthonormal wavelets with
the good behaviour at the borders from smooth extensions, which
enables their use in signal coding. We show few examples that
illustrate the improvement for coding finite-length signals.

Index Terms— orthonormal wavelets, compact support, finite-
length, symmetric extension, optimization.

1. INTRODUCTION

The conventional design procedures of orthonormal wavelets, e.g.,
[1], inherently assume an infinite-length wavelet transform. Nev-
ertheless, many real-life signals, e.g., images and ultrasound sig-
nals, have finite length. Migrating common orthonormal wavelets
to finite-length requires special treatment at the borders to guaran-
tee perfect reonstruction. There are two common approaches for
the wavelet transform of finite-length signls: designing time-varying
filters at the boundary, and using special signal extension. Signal ex-
tension includes periodic extension, symmetric extension and zero
padding [2]. Periodic extension always guarantees perfect recon-
struction for orthonormal wavelets whereas symmetric extension and
zero padding are mostly used with biorthogonal wavelets. The sec-
ond approach for finite-length wavelet transform uses time varying
boundary filters [3, 4, 5]. These filters can be optimized to have
certain desirable features, e.g., orthogonality, while satisfying the
perfect reconstruction condition.

In this work we consider the problem of designing orthonormal
wavelets of compact support that are suited for finite-length wavelet
transform. The perfect reconstruction conditions of the finite-length
transform are set as constraints in the wavelet design problem. The
kernel wavelet filter is designed using the wavelet parameterization
in [6]. Other desirable wavelet features could also be set as con-
straints in the design problem. We propose pratical examples where
the wavelet is designed to match a predefined template while satisfy-
ing the finite-length perfect reconstruction conditions. This wavelet
design is necessary for signal coding applications when the length
of the signal is relatively small, e.g., in compressing ultrasound
Doppler signals [7]. In section 5, we demonstrate the effectiveness
of the proposed algorithms by few examples from signal and image
coding. To our knowledge, this is the first work that addresses the
problem of designing compactly supported orthonormal wavelets
for finite-length signals.

Throughout the paper, we use bold-faced capital letters for
matrices, and bold-faced small letters for column vectors. A′ de-

notes the transpose of the matrix A (we assume all matrices and
data vectors are real). κ(A) denotes the condition number of A
[8]. We assume that the length of the wavelet low pass filter is
N = 2K + 2 where K is even. The notation ea of a column vector
a = [a(0), a(1), a(2), ..., a(2k − 1)]′ is:

ea , [a(2k − 1),−a(2k − 2), a(2k − 3), . . . , a(1),−a(0)]′ (1)

2. BACKGROUND

2.1. Orthogonal Wavelets with Compact Support

Compactly supported orthonormal wavelets are parameterized by a
low-pass filter h(n) that satisfies few existence and orthogonality
conditions [1]. By choosing the high-pass wavelet filter as

g(n) = (−1)nh(N − 1 − n) (2)

i.e., g = eh, then we have in general K + 1 degress of freedom in
the design of the orthonormal wavelet filter [6]. Therefore, Addi-
tional design criteria, e.g., vanishing moments, are usually included
in the wavelet design. Let xL(n) and xH(n) denote respectively
the approximate and detailed coefficients after one stage wavelet de-
composition. If the output of the analysis filter bank is organized
as:

y = [..., xL(−1), xH(−1), xL(0), xH(0), xL(1), xH(1), ...]′ (3)

then the analysis filter bank can put in a matrix form [9]

y = Hx (4)

where H is an infinite-dimensional orthonormal matrix defined as
[10]:
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where the submatrices U, E, and L (each of size K × K) are block-
Toeplitz matrices defined as
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The orthogonality of the filter bank implies that H′H = HH′ =
I. This could be rewritten as:

L′U = LU′ = 0 (9)
L′E + E′U = LE′ + EU′ = 0 (10)
L′L + E′E + U′U = LL′ + EE′ + UU′ = I (11)

It was shown in [10] that the Singular Value Decomposition
(SVD) of L,U and E are closely related. If the SVD of L has the
form,

L =
r

X

i=1

σiwiv
′
i (12)

with σi ≤ 1 for all i; then the SVD’s of U and E have the form

U = −
r
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σi ewiev′
i (13)

E =
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′
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K
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wiv
′
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where si ∈ {1,−1} and {vi}K
i=2r+1 are in the null space of L+U.

It was shown in [10, 6] that the low-pass filter h = [h(0) . . . h(N−
1)]′ is the solution of the linear system of equations:

Γh = b (15)

where b = [0 0 . . . 0
√

2]′; and Γ is an N × N matrix that is
parameterized by a vector [v′ σ]′ of length N/2, which is defined as
(recall that N = 2K + 2):

Γ(v, σ) =
`

eγ1 γ1 . . . eγK γK eu′ u′´′ (16)

where u is an all-ones vector and

eu , (1 − 1 . . . 1 − 1)′ (17)

and {γi} are vectors of length N that are parameterized by the pa-
rameter vector (v, σ) = (v1 . . . vK σ). For 1 ≤ i ≤ K we have

γi ,

8

<

:

[0 vK . . . vK+1−2i]
′ if i ≤ K/2

[0 vK . . . v1 − σv1 σv2 . . .
−σv2(i−K−1) σv2(i−K)]′ if i > K/2

(18)

where it has N − 2i zeros.The above parameterization describes the
wavelet filter coefficients as a continuous function of the unknown
decision variables. This enables the deployment of standard opti-
mization search techniques, e.g., gradient descent or Newton search
[11], for optimizing regular objective functions.

3. FINITE-LENGTH WAVELET TRANSFORM

In case of finite length signals, the filtering matrix (5) has finite di-
mensions. For example, if the signal length is M = lK, where l
is an integer, then the truncated filtering matrix would be a square
matrix of size M × M :
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Denote i-th input block (of size K) by xi, and the i-th output block
of size K by yi. The output in this case corresponds in zero-padding
of the input signal. Clearly Ht is no longer orthogonal. Let H# (of
size (M − 2K) × M ) denote the matrix that is composed of the
central M − 2K rows of H′

t. It is straightforward to show that [12]

H#Ht =
`

0 I 0
´

(20)

where I is the identity matrix of size M − 2K. Hence, by this direct
matrix multiplication we could recover the middle M − 2K sam-
ples of the input signal, and we are only left with the first and last
K samples, i.e., x1 and xl. This result could be straightforwardly
generalized for any size M > 2K + 2 (i.e., M does not have to be
multiple of K). In all cases we have,

yi = Uxi−1 + Exi + Lxi+1 for 1 < i < l (21)

Several approaches have been devised to recover remaining 2K sam-
ples [12], e.g.,

1. Periodic Extension: In this case, we have

y1 = Ex1 + Lx2 + Uxl (22)
yl = Uxl−1 + Exl + Lx1 (23)

Therefore using the orthogonality conditions (9)-(11), it is
straightforward to show that

x1 = L′yl + E′y1 + U′y2 (24)
xl = L′yl−1 + E′yl + U′y1 (25)

i.e., the perfect reconstruction is achieved in all cases without
any extra assumptions on the filter.

2. Symmetric Extension: Let J denote inverse diagonal matrix
with ones only on the main anti-diagonal. Then,

y1 = (E + UJ)x1 + Lx2 (26)
yl = Uxl−1 + (E + LJ)xl (27)

In general, this is not guaranteed to be reversible unless the
filter is symmetric. However, if (E+UJ) and (E+LJ) are
invertible, then x1 and xl can be computed as

x1 = (E + UJ)−1(y1 − Lx2) (28)
xl = (E + LJ)−1(yl − Uxl−1) (29)

where x2 and xl−1 are among the middle components that
are computed using (20).
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3. Zero Padding: A similar analysis applies to the zero padding
case. In this case the matrix model is Ht in (19). The perfect
reconstruction is possible if E in (7) is full-rank. In this case,

x1 = E−1(y1 − Lx2) (30)
xl = E−1(yl − Uxl−1) (31)

4. Generalized Extension: In some applications, e.g., signal
coding, we may extend the finite length signal by any seg-
ment of length K from the middle M − 2K samples to get
better boundary behavior. Since these samples are recovered
by direct filtering using (20), it does not affect the perfect
reconstruction. In this case, the analysis/synthesis relations
would be

y1 = Uxi + Ex1 + Lx2 (32)
x1 = E−1(y1 − Lx2 − Uxi) (33)

where 1 < i < l.

In Table 1, we list the condition numbers of E, E + UJ and E + LJ
of some standard orthonormal wavelets: Daubechies wavelets of
sizes 10, 14, and 18 (db10, db14, and db18); Coiflet wavelet of
length 18 (cf18), Symmlet wavelet of size 14 (sm14), and Beylkin
wavelet of size 18 (bl) [13, 14]. From the table we see that, some
standard wavelets, e.g., sm14, could be used unmodified with zero
padding while preserving perfect reconstruction.

Table 1. Condition numbers of standard wavelets
Wavelet K κ(E) κ(E + UJ) κ(E + LJ)

db10 4 88 88 88
db14 6 56 554 8.02e+3
db18 8 370 6.07e+5 8.7e+6
cf18 8 21 31 64
sm14 6 1.9 3.6 2.4

bl 8 478 8.6e+5 7.8e+5

4. WAVELET DESIGN PROCEDURE

Assume we have a given orthogonal wavelet filter {h0(n)} with an
ill-conditioned E matrix. The objective of wavelet filter design is
to find another orthogonal wavelet filter {h(n)} so that the corre-
sponding E matrix is well-conditioned (i.e., has a relatively small
condition number) while minimizing the distance between {h(n)}
and {h0(n)} in some meaningful sense. The condition number of E
is defined as [8]

κ(E) , σ1(E)

σK(E)
(34)

where σ1(E) and σK(E) are respectively the maximum and mini-
mum singular values of E. From [10], we have

σK(E) =
q

1 − σ2
1(L) (35)

σ1(E) ≈ 1 (36)

where σ1(L) is the largest singular value of L in (8). Hence if κ(E)
is required (for numerical stability) to be less than a certain value ε,
it is equivalent to

σ1(L) ≤
p

1 − ε−2 (37)

Note that, if a matrix has distinct singular values, then the mapping
of the singular values and the entries of the singular vectors to the
matrix entries is unique [8]. Furthermore, from the rank-one rep-
resentation of the singular value decomposition (e.g., in (12)) this
mapping is continuous and differentiable. Therefore, by the inverse
function theorem [15], the inverse function, i.e., the mapping from
the matrix entries to the singular values and the entries of the sin-
gular vectors, is also continuous and differentiable. Therefore, the
mapping from the matrix entries to the singular values is differen-
tiable. Furthermore, by applying the chain-rule [15] on the maxi-
mum of the singular values, we conclude that, the largest singular
value is a differentiable function of the matrix entries. Hence, σ1(L)
in (37) is a differentiable function of {h(n)}. From (15), {h(n)} is
a differentiable function of the vector [v′ σ]′ (of length N/2 + 1)
that parameterizes Γ in (15). Hence, by the chain rule, σ1(L) is
also a differentiable function of [v′ σ]′. Similarly, κ(E) is also a
differentiable function of the decision variables.

The filter perturbation problem can now be put in a standard
form. Starting from a template wavelet filter {h0(n)}, find a wavelet
filter {h(n)} to minimize ∥h0 − h∥2 under the constraint in (37),
where h satisfies (15) and the decision variables are [v′ σ]′ that pa-
rameterize Γ. This is a constrained nonlinear optimization problem
with differentiable objective functions and constraints of the decision
variables. Standard nonlinear programming techniques [11] could
be used to solve it. In particular, the log-barrier algorithm could be
used to convert the problem to an unconstrained nonlinear optimiza-
tion problem. In this case, the objective is to minimize the modified
objective function

J = ∥h − h0∥2 − log[
p

1 − ε−2 − σ1(L)] (38)

or equivalently

J = ∥h − h0∥2 − log[ξ − κ(E)] (39)

and the solution is done using standard gradient search or the Newton
algorithm [11]. The initial interior point of the algorithm could be
obtained by using random initial values of the decision vector [v′ σ]′

in (15), and computing the corresponding σ1(L) until condition (37)
is fulfilled.

The above time-domain optimization results in general in poor
behavior in the frequency domain. Nevertheless, it is useful when
the kernel wavelet is designed to match a template function in the
time domain, e.g., [16]. In the general case however, we are more
interested in matching the kernel behavior in the frequency domain.
If ĥ and ĥ0 denote the magnitude of the discrete Fourier transform
(DFT) of h and h0 respectively, then the objective function for the
frequency-domain optimization could be expressed as

J = (ĥ − ĥ0)′W(ĥ − ĥ0) (40)

where W is a diagonal weighting matrix, whose entries are inversely
proportional to the corresponding entries in ĥ0. Further, to allow for
both symmetric extension and zero extension at the boundaries, two
extra constraints should be included:

κ(E + UJ) ≤ ξ (41)
κ(E + LJ) ≤ ξ (42)

to allow for numerically stable reconstruction in (28) and (29). In
Fig. 1, we show few examples of applying the above constrained op-
timization problem to three standard orthonormal wavelets (whose
condition numbers are listed in Table 1). The resulting filters are
illustrated in Fig. 1 and the condition numbers of the resulting opti-
mized wavelet kernels are listed in Table 2.
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Fig. 1. Perturbation examples of some standard orthonormal
wavelets: Daubechies-18 (db18), Beylkin, and Daubechies 10
(db10)

Table 2. Condition numbers of perturbed Wavelets
Wavelet κ(E) κ(E + UJ) κ(E + LJ)
opt18 1.05 1.38 1.30
optB 1.04 1.27 1.21
opt10 1.001 1.001 1.001

5. EXAMPLES

Zero-padding of the input signal is of particular importance in real-
time implementation of the wavelet transform because it is a causal
transform [17]. The proposed design procedure provides an explicit
procedure for designing wavelts that support zero-padding among
other extensions with a single wavelet kernel. In Fig. 2, we give an
illustrative example of a single-stage wavelet decomposition using
different signal extensions. We compare the standard Daubechies
wavelet of order 18 (with periodic extension of the signal), to the
new designed filters: filter perturbation opt18 (with κ(E) ≈ 1.05)
with zero-padding. The proposed wavelet filter behaves almost the
same as the original wavelet but with a much better condition num-
ber that allows a more numerically stable synthesis. Also, note that
the periodic extension introduces high frequency components that is
emphasized at the border of the wavelet coefficients.

The performance of the proposed algorithms in image coding
was evaluated using many standard test images with the Set Parti-
tioning In Hierarchical Trees (SPIHT) coding algorithm [18]. The
PSNRs of the tests are listed in Table 3 for Daubechies wavelets of
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Fig. 2. Example of a single-stage wavelet decomposition of a seg-
ment of an ultrasound scan line using db18 (with periodic extension)
and opt18 (with zero padding)

size 10 and 18, and the corresponding perturbed wavelets opt10, and
opt18 as in Fig. 1. Note that, both the zero-padding and the sym-
metric extension (using the perturbed wavelet) provide consistent
improvement over periodic extension with the original orthonormal
wavelet even though the original wavelets have slightly better fre-
quency behavior.

Table 3. PSNR of proposed algorithm with SPIHT coding of stan-
dard images at 1 bit/pixel

Image Periodic Symmetric Zero Padding
db10 db18 opt10 opt18 opt10 opt18

Bridge 29.56 29.50 29.75 29.82 29.68 29.72
Lena 39.59 39.50 39.97 40.03 39.66 39.72

Cameraman 44.49 44.82 44.66 45.10 44.11 44.55
Pirate 35.80 35.63 36.25 36.31 36.00 36.04

Barbara 35.47 35.77 35.93 36.29 35.66 36.03
Boat 35.59 35.57 35.90 36.00 35.72 35.81

Peppers 36.09 35.40 36.64 36.51 36.47 36.35

6. CONCLUSION

We presented a novel procedure for designing orthonormal wavelets
of compact support that is suited for finite-length wavelet transform.
The perfect reconstruction conditions for the finite-length transform
(with the required signal extensions) are set as constraints in the
wavelet design problem. We demonstrated the design procedure
by examples to match the frequency or time response of standard
wavelets while satisfying the perfect reconstruction conditions of the
finite-length transform. The procedure can be generalized straight-
forwardly to handle other desired wavelet features that could be
added as additional constraints to the wavelet design problem.

The proposed algorithm provides a viable solution to support
perfect reconstruction orthogonal wavelet transform in real-time sys-
tems that operate on a sample-by-sample basis without compromis-
ing the coding performance. The effectiveness of the proposed algo-
rithm is established using practical signal processing examples.
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