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ABSTRACT 

 
We describe a method for generating causal, stable, numerically 

robust, IIR, customizable (application specific), perfect 

reconstruction (PR) filter-banks with zero (or adjustable) 

reconstruction delay. The ideas presented in this paper extend the 

concept of Dynamic Phasors as well as the concept of the so-called  

Phasor Bank Transform, which constitute specific subclasses of  

filter-banks. We provide an explicit compact characterization of 

the optimally-robust reconstruction stage of this transform, which 

can be used with any (customized) choice of its analysis stage. 

Since the Phasor Bank transform allows causal (real-time) delay-

free perfect reconstruction of any input waveform, it is perfectly 

suited for (closed-loop) control applications. Although the 

motivating application area of Phasor Banks is Power Systems, 

such as tracking of time-variant harmonic content under both 

steady-state (nearly-periodic) and transient operating conditions, 

the technique presented here can be used in a variety of closed loop 

applications.  

 
Index Terms— Causal Perfect Reconstruction Filter-Bank, 

Numerical Robustness, Phasor-Banks, Nyquist Filter, Dynamic 

Phasors 

 

1. INTRODUCTION 

 
Dynamic Phasors are finding increasing use in a variety of 

applications and, in particular, in the analysis and control of 

electric energy components and systems [1-5]. Some of the 

applications of the Dynamic Phasor framework include power 

systems (analysis of faults and protection) as well as power 

electronics (analysis of resonant and high-power converters, 

control of active filters). The classical Dynamic Phasor 

representation is based on the so-called Short-Time Fourier 

Transform (STFT) [6, 7, 9]. Its discrete version can be viewed as 

an  -channel Perfect Reconstruction (PR)  filter-bank (Fig. 1). 

    In this paper we describe a family of customizable Dynamic 

Phasors known as Phasor Banks (see Sec. 2) that generalizes the 

concept of Fourier Phasors, thereby allowing greater design 

flexibility as well as fine-tuning in order to match the needs of a 

broad variety of applications. Dynamic Phasors are frequently used 

in applications that require dynamic processing, namely processing 

carried out online in real time, using digital signal processing  
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Fig. 1.  Filter-bank interpretation of Dynamic Phasors 

hardware/software, one sample at a time. Consequently, all 

processing must be causal (and stable). To facilitate digital 

processing we shall use a discrete-time problem formulation. 

    In contrast to filter banks designed for coding applications, 

which employ down-sampling to achieve the smallest possible data 

rate subject to the constraint of perfect reconstruction, we opt to 

avoid down-sampling altogether. The use of non-decimated filter 

banks allows much greater flexibility in implementing the 

reconstruction step, and as a result also in the selection of the 

analysis filter bank [4, 5]. The resulting single-rate processing 

scheme also allows for a closer relation between our discrete-time 

generalized dynamic phasors and the continuous-time systems 

from which our signals of interest are acquired. 

    In summary, Phasor Banks are causal, uniform DFT-like, fully-

oversampled, perfect reconstruction filter banks, whose 

reconstruction delay can be selected at will within the integer 

interval         (Sec. 2). In addition, their analysis stage is 

entirely unconstrained, while their synthesis stage can be designed 

to optimize numerical robustness (Sec. 3). In this paper we 

characterize the design of a numerically robust IIR synthesis stage 

(Sec. 4), thereby extending our previous results about the design of 

FIR synthesis prototypes ( see [4, 8] ). We use an example to 

demonstrate the advantage of such IIR designs over the FIR case. 

 

2. PHASOR BANK FUNDAMENTALS 

 
Phasor Banks provide a generalization of the well-known discrete 

Gabor transform [6, 7, 9], which can be (equivalently) viewed as a 

perfect reconstruction  -channel uniform DFT filter bank. We 

define a Phasor Bank as a filter bank that satisfies the following 

conditions: 
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(i) Causal & stable:  

Phasor Banks are targeted for applications that require dynamic 

processing, namely processing carried out online in real time, using 

digital signal processing hardware/software, one sample at a time. 

As a consequence, all processing must be causal and stable.  

 

(ii) No Decimation: 

In contrast to filter banks designed for coding applications, which 

employ down-sampling to achieve the smallest possible data rate 

subject to the constraint of perfect reconstruction, we opt to avoid 

down-sampling altogether, so that     in Fig. 1. The resulting 

single-rate processing scheme allows for a closer relation between 

our discrete-time generalized Dynamic Phasors and the 

continuous-time systems from which our signals of interest are 

acquired, as well as greater flexibility in the selection of the Phasor 

Bank synthesis stage [4]. This type of filter-bank is known in the 

literature as fully oversampled [10]. 

 

(iii) Uniform DFT-like structure: 

Both analysis and synthesis filters have a uniform DFT-like 

structure,  that is, they can be expressed in terms of a prototype 
analysis filter      (PAF) and a prototype synthesis filter      
(PSF) respectively, viz.  

                                                                                              

                                                                                       

where        ,   represents the number of channels, 

   
  

 
, and   is the controllable reconstruction delay (Fig. 1). 

When     the expression (1a,b) coincides with the definition of 

a uniform DFT filter bank.  

 

(iv) Unconstrained Analysis Filter: 

The prototype analysis filter      of the Phasor Bank is 

unconstrained and thus can be designed to meet the specifications 

of a particular application of interest. For example, when used for 

dynamic frequency analysis in electric power systems, the analysis 

stage should be highly frequency selective. This reduces the 

leakage between frequency bands and allows unambiguous 

association of each Dynamic Phasor       with a single harmonic. 

 

(v) Controllable Delay Perfect Reconstruction (PR): 

Perfect reconstruction indicates that            , where   is 

the reconstruction delay (Fig. 1). Control applications usually 

require zero reconstruction delay, which cannot be achieved, for 

instance, with paraunitary QMF filter banks. The reconstruction 

delay   of our Phasor Banks is a design parameter, with any 

desired (integer) value in the range        , and is entirely 

independent of the analysis stage of the phasor bank. The perfect 

reconstruction requirement             for a phasor-bank 

with given causal           reduces to [4]. 

 

                                  

 

 
    

                

                            

 

where              , and      represents the impulse 

response of      [4]. Thus,      is a delayed version of a Nyquist 

filter [9]. Since      is unconstrained,      is responsible for 

satisfying (2). Because we do not down-sample the phasor-domain 

coefficients, every      has (infinitely) many matching choices of  

 

Fig. 2.  Simplified perturbation model for a PR filter-bank 

     that satisfy the PR condition (2). This added freedom of 

choice allows us to customize the selection of      with respect to 

other metrics of performance, such as reconstruction numerical 

robustness (see Sec. 3). 

 

3. MEASURES OF NUMERICAL ROBUSTNESS 

 
Numerical robustness (a.k.a "stability of reconstruction") refers to 

the effects of perturbations/errors in       on the reconstructed 

signal      [11], (Fig. 2). Using vector-matrix notation, let  ,   

represent the input-output signal space mappings induced by the 

analysis (AFB) and synthesis (SFB) filters, respectively (Fig. 2). 

Thus, we have  

                                
               

         
                              

which is true for every norm, where   represents the collection of 

all   's (Fig. 2). Including the requirement of perfect 

reconstruction (i.e.,       ) we conclude that          , so 

that numerical robustness of filter banks is synonymous with 

reducing the product        . The minimum value of this 

product               is achieved by using: (i) the canonical 

left inverse         , and (ii) making   unitary [9]. This optimal 

solution is not causal, and attempting to make it causal results in 

significant reconstruction delay. We shall focus here on the 

Euclidean vector norm, so that  

                               

           
    

      
          

      
   

      
    

   

     

                            

Notice that the same robustness index values are obtained when we 

replace the Euclidean norm in (4) by the "RMS - norm"   

               
 

 
           
    , which is more appropriate 

for persistent (finite power) signals. This allows us to model the 

perturbations        as independent white noise processes, all 

with the same variance, and the input signal      as a stationary 

ergodic process.  

    Using these assumptions along with causality, stability and the 

property (1), the robustness index (for    ) is minimized by 

selecting      as the solution of the linearly constrained quadratic 

optimization problem: 

                                                        
 

 
 

 
    

                                           

subject to 

                                                      
 

 
                                            

where 
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The optimally robust solution of (5) is given by 

 

                                           
    
    
 

 

   

   
 

 
                                      

 

where    denotes the generalized (Moore-Penrose) inverse of this 

infinite matrix. The resulting optimal impulse response      has 

infinite length, since    and    have infinite dimensions. The 

optimal IIR solution can be approximated, to any desired level of 

accuracy, by truncating  ,    to finite size, which results in an 

FIR approximation for     .  

 

4. OPTIMALLY ROBUST IIR FILTER 

 
In view of the need to truncate the expression (7) to finite 

dimensions, we consider in this section optimized choices of the 

prototype synthesis filter      that are FIR of a prescribed length. 

In particular, when the prototype analysis filter      satisfies a 

mild regularity condition, the optimal FIR      can be expressed, 

without approximation, in terms of finite dimensional matrices.  

 

Theorem 4.1: (Optimal FIR     )  
Consider a given IIR prototype analysis filter                         

               with                           so 

that                 
    and                 

   .                   

Let               denote the poles of this filter (i.e., the 

roots of     ), and assume that  

 

                                   
    

                                                       

                                                                                              

Then, the optimally-robust FIR prototype synthesis filter         

of a prescribed length    is given by                     where 

        is an FIR filter of length            whose impulse 

response is  

                            
 

 
      

 

         
 

  
 

                      

              

or, equivalently,  

 

                     
 

 
                                             

.                                                                                                     

with            , and 

 

                         

 
 
 
 
 
 
 

     
      
      

         

         

     
      

 
 
 
 
 
 

                         

 

               
          
            
        

                  

           

Both   and   are finite dimensional, viz.,          ,      

         , where           
         

 
     We use the 

notation    to denote the length of the impulse response of the FIR 

filter     , i.e.,                  and similarly for       

  . Also,          is the lower triangular Cholesky factor of the 

symmetric positive-definite matrix                                              

 

Theorem 4.1 guarantees that               is FIR, so that 

the perfect reconstruction condition (2) gives rise to a finite set of 

linear equations whose optimal solution is given by (9a-d). 

Typically,      is  the product of a classic filter technique (such as 

Butterworth, Chebyshev, etc. ) in which condition (8) is rarely 

violated. The following theorem shows that the PR condition can 

sometimes be satisfied with a specially structured IIR     .                        
 

Theorem 4.2: (Optimal IIR     ) 

Consider a given IIR prototype analysis filter      
    

    
 where 

the poles of      satisfy (8), and a prototype synthesis filter of the 

form      
    

     
. A necessary condition for               to 

satisfy the PR condition (2) is that               for some 

polynomial     , and that all roots of        violate (8), namely  

       ,    , such that   
    

 . With this condition satisfied, 

there are multiple choices of      that result in Perfect 

Reconstruction (PR).                                                                          

 

    One simple choice of       consists of a collection of complex 

pole pairs         
              such that       

 
 

 . Thus 

                  
 

 
       

        
   . The resulting 

optimization problem is now non-linear since we are optimizing 

for both      and the special pole magnitudes    . The optimally-

robust IIR prototype synthesis filter with      of a given length    

and       as in Theorem-4.2, with prescribed pole magnitudes                   

              is given by         
           

     
 so that      

              
           

     
, as required by Theorem-4.2. The 

optimal choice of         coefficients depends on   and is given 

by  

                             
 

 
   

    
 
 

       
    

 
 

  
 

                                                                

                                                                                                       

where             
   ,              

   and              

          is the lower-triangular Toeplitz matrix associated 

with      . Also,    
    

    is the lower triangular Cholesky 

factor of the symmetric positive-definite matrix   
   . Since    is 

a square matrix of infinite size, this approach requires truncation as 

opposed to the method based on (9).  

 

Special cases: 

(i)  The optimized Windowed-FIR Phasor Bank [4] is a special 

case of Theorem-4.1. It is obtained by setting        so that 

                and     is an identity matrix. Since the rows 

of   are mutually orthogonal,     is a diagonal matrix.  

(ii)  The optimized Constrained FIR (CFIR) solution (9) can be 

obtained from the Constrained IIR (CIIR) solution (10) by setting 

        and     , that is, there are no special poles of      
that violate (8). 
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5. NUMERICAL EXAMPLE 

 
The results of using the three different methods discussed in this 

paper (7), (9), (10) are summarized by means of the following 

example. 

 

Consider an      channel Phasor Bank with     

reconstruction delay. Let the prototype analysis filter be low-pass 

IIR of the form      
    

    
 constructed via the MATLAB® 

command cheby2( 6 , 40, 1/M ) so that        . For the 

Unconstrained approach we use truncation, so that                  

          , with      . For the CFIR approach we use                 

              and    , so that          , 

         . The two methods achieve the same level of 

numerical robustness, as seen in Table I. However, the 

computational cost of evaluating (9) is smaller than that of (7), and 

the resulting solution is more accurate, in the sense of achieving a 

smaller PR error. To quantify the effects of truncation and finite 

precision on the PR condition we evaluate the gap between the 

achieved                and its nominal value, viz., 

                            
    

 
 

 
       

 

 

Table I : Robustness indices for the CFIR & truncated approaches 

      PR error 

Unconstrained 4.7374 2.78e-13 

CFIR 4.7374 6.66e-16 

 

For the CIIR approach (10) we use a special single pole pair     
 

 , 

where   is used as a design parameter, and                 

so that the total number of multipliers remains the same as in the 

CFIR case. Fig. 3 shows that a suitable choice of   can result in a 

15% improvement in the robustness index when we allow a special 

pole pair in the design of      (indicated by the solid black dot). 

Finally Fig. 4 shows the effect on the PR error when varying the 

special pole angle. We observe that although Theorem-4.2 requires 

that the angle difference     is exact, in practice, a small 

variation around that value (due to finite wordlength) will still 

result in a reliable PR-Error value.  

 

6. RELATION TO PRIOR WORK AND 

CONCLUDING REMARKS 

 
The design of uniform DFT filter banks has historically focused on 

critically (or nearly critically) sampled representations, with strong 

preference for orthogonal mappings (such as the DFT) which 

exhibit high numerical robustness [6, 9, 10]. This approach results 

invariably in non-causal synthesis prototypes (obtained via the 

non-causal canonical dual), so that significant reconstruction delay 

has to be introduced in order to recover causality. In contrast, our 

approach includes causality and zero reconstruction delay as strict 

constraints. We also allow for small (     ), controllable 

reconstruction delay when such a delay is required in applications, 

such as [12]. In contrast, previous approaches for designing 

uniform-DFT-like filter banks, such as [13], result in 

reconstruction delays that are  

 

Fig. 3.  Robustness index vs. special pole magnitude   

 

Fig. 4.  PR-Error index vs. special pole angle variation 

relatively large (   ), and completely exclude the possibility of 

delay-free reconstruction. 

    The concept of Phasor Banks, as introduced in [4], allows for 

unconstrained customization of the causal analysis prototype filter 

    . The choice of the causal synthesis prototype filter      must 

satisfy the perfect reconstruction condition, with reconstruction 

delay selected at will in the range        , and can be 

optimized in terms of reconstruction numerical robustness. A 

complete characterization of the optimal FIR      of length   

(  windowed FIR) was provided in [4]. A complete 

characterization of the optimal FIR      of length      was 

introduced in [8]. In this paper we presented a complete 

characterization of the optimal IIR      of arbitrary order. We 

demonstrated via a simple numerical example that such 

"constrained-IIR" Phasor Banks can achieve the same performance 

and the same level of numerical robustness as the "constrained-

FIR" designs of [8], but at lower implementation cost (  fewer 

multipliers).  

    A useful by-product of our analysis of IIR Phasor Banks is a 

compact characterization of the poles of a (shifted) causal Nyquist 

filter, which should be contrasted with the previously published, 

and significantly more complicated, characterization in [14].  
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