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ABSTRACT

In this paper, a novel sub-class of linear-in-the-parameters (LIP)
nonlinear filters, formed by the so-called even mirror Fourier non-
linear (EMFN) filters, is presented. These filters are universal ap-
proximators for causal, time invariant, finite-memory, continuous
nonlinear systems as the well-known Volterra filters. However, in
contrast to Volterra filters, their basis functions are mutually orthog-
onal for white uniform input signals. Therefore, in adaptive applica-
tions, gradient descent algorithms with fast convergence speed and
efficient nonlinear system identification algorithms can be devised.
Preliminary results, showing the potentialities of EMFN filters in
comparison with other LIP nonlinear filters, are presented and com-
mented.

Index Terms— Nonlinear system identification, linear-in-the-
parameters nonlinear filters, universal approximators, orthogonality
property.

1. INTRODUCTION

Linear-in-the-parameters (LIP) nonlinear filters with finite or infinite
memory constitute a relevant class of models for nonlinear systems.
In fact, most of the commonly used finite-memory nonlinear models
belong to this class. Among them, the most popular are, perhaps,
the truncated Volterra filters [1] that are still actively studied and
used in applications [2]−[9]. Other elements of the class are either
particular cases of Volterra filters, as the Hammerstein filters [1],
[10]−[12], or are strictly related to them, as memory and general-
ized memory polynomial filters [13], [14]. The finite-memory class
also includes filters based on functional expansions of the input sam-
ples, as functional link artificial neural networks (FLANN) [15] and
radial basis function networks [16]. A review in a unified framework
of finite-memory LIP nonlinear filters can be found in [17]. More
recently, infinite-memory LIP nonlinear filters have been introduced
[18]−[22] and used, in particular, for active noise control.

In this paper, we introduce a novel sub-class of finite-memory
LIP nonlinear filters, the so-called even mirror Fourier nonlinear
(EMFN) filters, that are based on trigonometric functional expan-
sions, as the FLANN filters, and share with Volterra filters the
property of being universal approximators for causal, time invariant,
finite-memory, continuous nonlinear systems. The FLANN filter,
originally introduced in the field of neural networks as an effective
alternative to the widely-used multilayer artificial neural network,
has been recently exploited in the field of signal processing due to its
reduced computational complexity. FLANN filters have been used
in nonlinear channel equalization [23], nonlinear active noise control
[24], [25], and nonlinear acoustic echo cancellation [8], [26]. How-
ever, as pointed out in [27], the performance of a FLANN filter may
be negatively affected in some applications, since it does not include
cross-terms, i. e. products of samples with different time shifts. To

overcome this difficulty, a generalized FLANN (GFLANN) filter
has been proposed in [28], by adding appropriate cross-terms to
the conventional FLANN filter. Nevertheless, it can be noted that
the basis functions of FLANN and GFLANN filters do not satisfy
the conditions of the well-known Stone-Weierstrass approximation
theorem [29], and thus may not fulfill the requirements for uni-
versal approximation. The EMFN filters presented in this paper
permit to overcome these limitations. Such filters are introduced
resorting to an N -dimensional representation of a given nonlinear
continuous function f [x(n), x(n − 1), . . . , x(n − N + 1)] of the
N most recent input samples. In our derivations, we make use of
the generalized Fourier series which permits the representation of a
continuous function by means of a generic set of orthogonal basis
functions [30]. Accordingly, it is shown in the paper that the basis
functions of EMFN filters are mutually orthogonal in RN

1 for white
uniform input signals. Moreover, they satisfy the requirements of
the Stone-Weierstrass theorem, and thus are universal approxima-
tors, i. e. linear combinations of basis functions can arbitrarily well
approximate a continuous nonlinear function of N input samples
f [x(n), x(n− 1), . . . , x(n−N + 1)], as the well-known Volterra
filters. However, in contrast to Volterra filters, the orthogonality
property allows the derivation of gradient descent algorithms with
fast convergence speed. Moreover, efficient identification algorithms
for nonlinear systems with performance often better than those of
Volterra filters, especially in presence of strong nonlinearities, can
be devised.

The paper is organized as follows. In Section 2, general con-
siderations on the approach used for introducing a novel class of
nonlinear filters on the basis of the Stone-Weierstrass approximation
theorem are outlined. In Section 3, EMFN filters are introduced and
their properties are described. Some simulation results, showing the
potentialities of EMFN filters in comparison with other LIP filters,
are presented in Section 4. Conclusions follow in Section 5.

Throughout the paper the following notation is used. Sets are
represented with curly brackets, intervals with square brackets, while
the following convention for brackets:

{[(

· · · {[()]} · · ·
)]}

is used
elsewhere.

2. GENERAL CONSIDERATIONS

Assuming for simplicity the system to be causal, the input-output
relationship of a time-invariant, finite-memory, continuous nonlinear
system can be expressed by a nonlinear function f of the N most
recent input samples, i. e.

y(n) = f [x(n), x(n− 1), . . . , x(n−N + 1)]. (1)

In (1), the input signal x(n) is assumed to take values in the range
[−1,+1],

x(n) ∈ R1 = {x ∈ R, with |x| ≤ 1} , (2)
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y(n) ∈ R is the output signal and N is the system memory. The
representation in (1) is useful to efficiently implement the finite-
memory nonlinear filters, suitably exploiting their shifting property
[17]. From the analysis point of view, equation (1) can be inter-
preted as a multidimensional function in the RN

1 space, where each
dimension corresponds to a delayed input sample. This represen-
tation has been already exploited, for example, to represent trun-
cated Volterra filters where the nonlinearity is mapped to multidi-
mensional kernels that appear linearly in the input-output relation-
ship [1]. Therefore, it is possible to represent the nonlinear function
f [x(n), x(n−1), . . . , x(n−N+1)] with a series of basis functions
fi, as in the following equation

f [x(n), x(n− 1), . . . , x(n−N + 1)] =

+∞
∑

i=1

cifi[x(n), x(n− 1), . . . , x(n−N − 1)], (3)

where ci ∈ R, and fi is a continuous function from RN
1 to R, for

all i. Every choice of the set of basis functions fi defines a different
kind of nonlinear filters, which can be used to approximate the non-
linear systems in (1). In particular, we are interested in nonlinear fil-
ters that are able to arbitrarily well approximate every time-invariant,
finite-memory, continuous nonlinear system. To this purpose, we re-
sort to the well known Stone-Weierstrass theorem [29]:

“Let A be an algebra of real continuous functions on
a compact set K. If A separates points on K and if A
vanishes at no point of K, then the uniform closure B
of A consists of all real continuous functions on K”.

Indeed, according to the Stone-Weierstrass theorem any algebra of
real continuous functions on the compactRN

1 which separates points
and vanishes at no point is able to arbitrarily well approximate the
continuous function f in (1). A family A of real functions is said
to be an algebra if A is closed under addition, multiplication, and
scalar multiplication, i. e., if (i) f + g ∈ A, (ii) f · g ∈ A, and (iii)
cf ∈ A, for all f ∈ A, g ∈ A and for all real constants c.

A set of basis functions that satisfies the requirements of the
Stone-Weierstrass theorem is the polynomial set
{

1, x(n), x(n−1), . . . , x(n−N +1), x2(n), . . . , x2(n−N +1),

x(n)x(n− 1), . . . , x(n−N + 2)x(n−N + 1), . . . ,

x(n)x(n−N + 1), x3(n), . . .
}

.

The linear combination of these basis functions defines the well-
known truncated Volterra filters.

A class of basis functions that does not satisfy the requirements
of the Stone-Weierstrass theorem is that of FLANN filters

{

1, x(n), x(n− 1), . . . , x(n−N + 1),

cos[πx(n)], . . . , cos[πx(n−N + 1)],

sin[πx(n)], . . . , sin[πx(n−N + 1)],

cos[2πx(n)], . . . , cos[2πx(n−N + 1)],

sin[2πx(n)], . . . , sin[2πx(n−N + 1)], . . . ,
}

This class is not complete under multiplication and FLANN filters
cannot approximate well system having cross-terms, i. e. product of
samples with different time shifts. For instance, they cannot approx-
imate with arbitrary accuracy the system y(n) = x(n) · x(n − 1)
because none of the FLANN basis functions has this cross product
in its Volterra series expansion.

In this paper we are interested in developing a class of nonlinear
filters based on sine and cosine functions of the input signal, similar
to those of FLANN filters. Differently from FLANN filters, we want
our class to satisfy all the requirements of the Stone-Weierstrass the-
orem to be able to arbitrarily well approximate any continuous, finite
memory, causal nonlinear system.

3. EVEN MIRROR FOURIER NONLINEAR FILTERS

For presentation’s simplicity, we first consider the case of an 1-
dimensional function in (1), where f(x) is a continuous function
from the unit interval [−1, 1] to R. In order to expand the func-
tion f(x) using sine and cosine functions, it is possible to consider
the periodic repetition of f(x) with period 2 and the Fourier series
expansion of f(x). It is well-known from the Fourier theory that
the series converges to the function f(x) on all the points of the
interval [−1,+1], apart from the borders ±1 where discontinuities
caused by the periodic repetition of f(x) can be present. Moreover,
as still known from the Fourier theory, these discontinuities origi-
nate relevant high-order terms in the Fourier expansion of f . In the
1-dimensional case, apart from the linear term, FLANN filters coin-
cide with a truncation of the Fourier series expansion of f , and thus
are affected by these jump discontinuities at ±1. From the theory
of Discrete Cosine Transform we know that a simple expedient to
avoid this drawback is that of considering a mirror image periodic
repetition of f . Thus, here we extend f(x) on the entire real axis R
by considering its periodic even mirror repetition, so that

f(1 + x) = f(1− x). (4)

and
f(x+ 4) = f(x). (5)

Since f(x) is periodic of period 4, we can consider its Fourier series
expansion using the basis functions

{1, cos(
π

2
x), sin(

π

2
x), cos(πx), sin(πx), cos(

3π

2
x), sin(

3π

2
x),

cos(2πx), sin(2πx), cos(
5π

2
x), sin(

5π

2
x), . . .}. (6)

The basis functions

{cos(
π

2
x), sin(πx), cos(

3π

2
x), sin(2πx), cos(

5π

2
x), . . .}

are not even mirror, i. e. they do not satisfy the condition in (4),
and consequently they do not contribute to the even mirror periodic
expansion of the function f(x). It can be easily verified that the
remaining basis functions

{1, sin(
π

2
x), cos(πx), sin(

3π

2
x), cos(2πx) sin(

5π

2
x), . . .} (7)

satisfy the conditions (4) and (5), and thus can be used to approxi-
mate the 1-dimensional even mirror periodic extension of f(x). It
is convenient now to attribute the following orders to the basis func-
tions: 1 is the basis function of order 0, sin(π

2
x) is the basis function

of order 1, cos(πx) is the basis function of order 2, . . ., cos(kπx) is
the basis function of order 2k and sin( (2k+1)π

2
x) is the basis func-

tion of order 2k + 1.
Let us now interpret the continuous nonlinear function

f [x(n), x(n− 1), . . . , (n−N +1)] as a multidimensional function
in the RN

1 space, where each dimension corresponds to a delayed
input sample. It is then possible to give account of the even mirror
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nonlinear basis functions in the N -dimensional case, passing from
R1 to RN

1 . To this purpose, we first consider the 1-dimensional
basis functions in (7) for x = x(n), x(n− 1), . . . , x(n−N + 1):

1, sin[
π

2
x(n)], cos[πx(n)], sin[

3π

2
x(n)], . . .

1, sin[
π

2
x(n− 1)], cos[πx(n− 1)], sin[

3π

2
x(n− 1)], . . .

...

1, sin[
π

2
x(n−N+1)], cos[πx(n−N+1)], sin[

3π

2
x(n−N+1)] . . .

Then, to guarantee completeness of the algebra under multiplication,
we multiply the terms having different variables in any possible man-
ner, taking care of avoiding repetitions. It is easy to verify that this
family of real functions and their linear combinations constitutes an
algebra on the compact [−1, 1] that satisfies all the requirements of
the Stone-Weierstrass theorem. Indeed, the set of functions is closed
under addition, multiplication and scalar multiplication. The algebra
vanishes at no point due to the presence of the function of order 0,
which is equal to 1. Moreover, it separates points, since two sep-
arate points must have at least one different coordinate x(n − k)
and sin[π

2
x(n − k)] separates these points. As a consequence, the

nonlinear filters exploiting these basis functions are able to arbitrar-
ily well approximate any time-invariant, finite-memory, continuous
nonlinear system.

More specifically, let us define the order of an N -dimensional
basis function as the sum of the orders of the constituent 1-
dimensional basis functions. For example, cos[2πx(n)]·cos[πx(n−
1)] · sin[π

2
x(n− 2)] has order 4+ 2 + 1 = 7. Avoiding repetitions,

we thus obtain the following basis functions:
The basis function of order 0 is the constant 1.
The basis functions of order 1 are the N 1-dimensional basis func-
tions of the same order:

sin[
π

2
x(n)], sin[

π

2
x(n− 1)], . . . , sin[

π

2
x(n−N + 1)].

The basis functions of order 2 are the N 1-dimensional basis func-
tions of the same order and the basis functions originated by the
product of two 1-dimensional basis functions of order 1. Avoiding
repetitions, the basis functions are:

cos[πx(n)], cos[πx(n− 1)], . . . , cos[πx(n−N + 1)],

sin[
π

2
x(n)] · sin[

π

2
x(n− 1)], . . . ,

sin[
π

2
x(n−N + 2)] · sin[

π

2
x(n−N + 1)],

sin[
π

2
x(n)] · sin[

π

2
x(n− 2)], . . . ,

sin[
π

2
x(n−N + 3)] · sin[

π

2
x(n−N + 1)],

...

sin[
π

2
x(n)] · sin[

π

2
x(n−N + 1)].

Thus, we have N · (N + 1)/2 basis functions of order 2.
Similarly, the basis functions of order 3 are the N 1-dimensional
basis functions of the same order, the basis functions originated by
the product between an 1-dimensional basis function of order 2 and
an 1-dimensional basis function of order 1, and the basis functions
originated by the product of three 1-dimensional basis functions of
order 1. This constructive rule can be iterated for any order P .

It is worth noting that the basis functions of order P can also be
obtained by multiplying in every possible way the basis functions of
order P − 1 by those of order 1 and deleting repetitions. In this case
it is necessary to apply the following substitution rule for products
between factors having the same time index:

cos(mπx) sin(
π

2
x) −→ sin(

2m+ 1

2
πx),

sin(
2m+ 1

2
πx) sin(

π

2
x) −→ cos[(m+ 1)πx].

In fact, due to the prosthaphaeresis formulas, cos(mπx) sin(π
2
x)

is a linear combination of the basis function sin( 2m+1
2

πx) and of a
basis function of order 2m−1, sin( 2m−1

2
πx). A similar justification

applies to the second replacement rule.
It clearly appears that the multiplicative rule for generating the

basis functions of order P from those of order P − 1 is the same
rule applied for Volterra filters. In our case, the linear combination
of all the even mirror basis functions of the same order P defines an
EMFN filter of uniform order P . The number of its terms is

(

N + P − 1

P

)

, (8)

where N is the memory length. Clearly, this number is the same
of the polynomial basis functions of a Volterra filter with the same
memory of N samples. The linear combination of all the basis func-
tions with order ranging from 0 to P and memory length of N sam-
ples defines an EMFN filter of nonuniform order P . The number of
its terms is

(

N + P

N

)

. (9)

It is now possible to show that the set of basis functions of
EMFN filters is orthogonal inRN

1 . In fact, taking two different basis
functions fi and fj , the orthogonality condition is written as

∫ +1

−1

· · ·

∫ +1

−1

fi[x(n), x(n− 1), . . . , x(n−N + 1)]·

fj [x(n), x(n− 1), . . . , x(n−N + 1)] · dx(n) · · ·dx(n−N + 1)

= 0 (10)

It is easy to verify that the basis functions of EMFN filters satisfy
(10) since for any integer m

∫ +1

−1

sin(
2m+ 1

2
πx)dx =

∫ +1

−1

cos(mπx)dx = 0. (11)

As a direct consequence of this orthogonality property, the expansion
of f [x(n), . . . , x(n−N+1)] with the proposed basis functions is a
generalized Fourier series expansion [30]. Moreover, the following
condition also holds for a white uniform distribution of the input
signal samples
∫ +1

−1

· · ·

∫ +1

−1

fi[x(n), . . . , x(n−N+1)]·fj [x(n), . . . , x(n−N+1)]·

·p[x(n), . . . , x(n−N +1)] ·dx(n) · · ·dx(n−N +1) = 0, (12)

where p[x(n), . . . , x(n−N+1)] is the probability density of the N -
tuple [x(n), . . . , x(n−N+1)], equal to the constant 1/2N for a white
uniform distribution inR1. As a consequence, it is possible to devise
for EMFN filters simple identification algorithms using input signals
with white uniform distributions in the range [−1,+1]. Moreover, a
fast convergence of the gradient descent adaptation algorithms, used
for nonlinear systems identification, is expected in this situation.
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Table 1. MSE versus K for Volterra, FLANN, and EMFN filters.
K 0.125 0.25 0.50 0.75 1.00

Volterra 1.3 · 10−1 8.3 · 10−2 3.0 · 10−2 1.0 · 10−2 3.6 · 10−3

FLANN 2.3 · 10−1 1.7 · 10−1 9.4 · 10−2 5.0 · 10−2 2.6 · 10−2

EMFN 1.2 · 10−1 7.2 · 10−2 2.5 · 10−2 8.6 · 10−3 3.3 · 10−3
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Fig. 1. Learning curves of (a) Volterra, (b) FLANN, (c) EMFN filters.

4. SIMULATION RESULTS

In this section we provide some simulation results to show the po-
tentialities of EMFN filters in comparison with Volterra and FLANN
filters, and we highlight the advantages of the orthogonality property
in (12). Here we work in a simulated environment to better control
the characteristics of the unknown system to be modeled. We will
provide experimental results for the identification of real systems in
a companion paper discussing algorithms for the identification of
long-memory nonlinear systems.

When dealing with different nonlinear filter structures we must
take into account that each structure is better fitted to certain nonlin-
ear conditions, and may work worse in other conditions. When mod-
eling a nonlinear system affected by a small nonlinearity, a Volterra
or FLANN filter may be a model better than the EMFN filter, be-
cause the latter does not use explicitly a linear term. In contrast, in
presence of a strong nonlinearity as, for example, a saturation effect,
EMFN filters can offer performance better than Volterra filters and
much better than FLANN filters.

In our experiments we consider the identification of a Wiener
model obtained by cascading a linear filter with the memoryless non-
linearity

y(n) = tanh[x(n)/K], (13)

where K is a positive constant that controls the strength of the
nonlinearity. The entries of the impulse response of the linear fil-
ter, {−1.630,−0.741,−0.111, 0.350,−0.194, 0.002, 0.750}, have
been selected randomly. This system is modeled with Volterra,
FLANN and EMFN filters with memory of 7 samples. Since the
nonlinear system is odd, we consider only the odd terms of Volterra
and EMFN filters, and the sine terms of FLANN filters. The order
of the Volterra and EMFN filters is 3 and the order of the FLANN
filter is 12. Thus, the number of coefficients is 91 for all filters.
An LMS algorithm with a white uniform input signal in [−1,+1]
is used for the identification. Since the three different nonlinear
filters converge to different Mean Square Errors (MSE), whatever
the choice of the step-size, we compare the performance of the
algorithms for the same step-size, equal to 0.001. Figure 1 shows
the ensemble averages over 100 realizations of the learning curves
of MSE for the three filters in a situation of noticeable nonlinear-
ity (K = 0.5). The first characteristic we can observe is the fast

convergence speed of EMFN and FLANN filters compared to the
Volterra filter. According to the orthogonality property in (12), the
autocorrelation matrices of the input data vector of EMFN filters are
diagonal (a property never shared by Volterra filters for any input
signal [1]). This fact explains the fast convergence of EMFN filters
in comparison with Volterra filters. With FLANN filters, we loose
the orthogonality of the autocorrelation matrix, but we still have a
good conditioning, and thus the convergence speed remain similar
to that of EMFN filters. The steady-state modeling properties of the
three filters strongly depend on the level of the nonlinearity, i. e. on
the value of K in our case. Table 1 provides the average value of
MSE estimated on 100 000 samples after convergence (specifically,
after a simulation 106 samples long) for K ranging between 0.125
and 1. The larger is K, the smaller is the effect of the nonlinearity.
For K greater than 1, the system is almost linear, and the Volterra
and FLANN filters provide the best MSEs thanks to their linear term.
On the other hand, for K between 1 and 0.25, i. e. for a nonlinear-
ity ranging from mild to strong, the EMFN filter provides the best
MSEs. For K = 0.125, the nonlinearity is very strong and all filters
become less efficient in modeling it within the chosen filter orders.
Clearly, higher filter orders can give better results, but with higher
computational complexity. In conclusion, in the reported nonlinear
situation, the EMFN filter is able to offer fast convergence together
with small residual MSEs with respect to other LIP nonlinear filters,
such as FLANN and Volterra filters, on a wide range of nonlinearity.

5. CONCLUSIONS

In this paper, a novel sub-class of finite-memory LIP nonlinear
filters, the EMFN filters, has been introduced. EMFN filters are
based on trigonometric functions which are mutually orthogonal
for white uniform input signals. It has been shown that their linear
combinations are universal approximators, according to the Stone-
Weierstrass theorem, for causal, time invariant, finite-memory, con-
tinuous nonlinear systems. As a consequence of the orthogonality
property, EMFN filters may offer better convergence speed and
lower approximation errors than FLANN and Volterra filters, espe-
cially in presence of noticeable nonlinearities. Presently, work is in
progress to apply EMFN filters to the identification of real-world
nonlinear systems.
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