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ABSTRACT
This paper proposes a general structure for FIR filters with ad-
justable magnitude and phase responses controlled by a few
parameters. The Farrow structure which uses one parameter
to control the fractional delay of an FIR filter can be viewed
as special case. A filter bank structure consisting of differ-
ent types of linear phase differentiators forms the basis of the
structure. The filter bank outputs are combined with coef-
ficients derived from a polynomial expansion of the desired
frequency response. The magnitude and phase responses are
controlled by synthesizing the polynomial coefficients from
the small set of control parameters. A new optimal polyno-
mial approximation strategy is also proposed to better approx-
imate the family of target frequency responses.

Index Terms— Farrow structure, fractional delay filter,
optimal polynomial approximation

1. INTRODUCTION

Digital FIR/IIR filter design is a well studied area. Various
design specifications and the corresponding algorithms [1, 2]
have been proposed or standardized. However, most of these
design methods are optimized over a single fixed specifica-
tion. To realize adjustable characteristics for those filters, we
have to find an efficient way to update the coefficients of the
digital filters rather than running a costly filter design routine
in real time. Many interesting structures have been proposed
to realize filters with adjustable cutoff frequencies [3] and sub
band distributions [4]. Perhaps the most successful architec-
ture is the so called Farrow structure [5] which controls the
adjustable fractional delay (FD) of an FIR filter with a single
parameter. FD filters are widely used in many applications
such as timing adjustment in digital modems [6], speech cod-
ing and synthesis [7], digital wave guide modeling [8] and
sampling rate converters [9]. A comprehensive study of the
existing design methodologies is summarized in [10, 11].

Fig. 1 shows the diagram of the Farrow structure, where
the filter bank H0(z) to HL(z) are FIR filters with the same
order. The beauty of the Farrow structure lies in the fact that
the adjustable characteristic, i.e., the fractional delay d of the
filter structure, is controlled by the single parameter d. The
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Fig. 1. The Farrow structure

Farrow structured FD filter represents a case where the slope
of the linear phase response is adjustable. This paper pro-
poses a general structure that is able to adjust both the mag-
nitude and phase responses of the resulting filter simultane-
ously, with the Farrow structured FD filter as a special case.
A new optimal polynomial approximation strategy is also pro-
posed to better approximate the target frequency responses.
The implementation of filters with adjustable cutoff frequen-
cies and quadratic phases are also demonstrated.

2. SETUP FOR THE GENERALIZED ADJUSTABLE
FILTER STRUCTURE

Suppose that the ideal frequency response of an FIR filter of
order N can be written such that the magnitude and phase
responses of the filter are expressed as polynomials of ω

Hid(ejω) =

(
P∑

p=0

apω
p

)
e−j[(N/2)ω+

∑Q
q=1 bqω

q] (1)

where P and Q are the order of amplitudes and phase re-
sponses, respectively. Then the frequency response of the
filter can be controlled by directly adjusting the polynomial
coefficients ap and bq . The ranges of adjustability for ap and
bq are given by ap ∈ Ap, bq ∈ Bq . The bandwidth of interest
is given by ω ∈ Ω.

In the first approximation stage, we can approximate each
polynomial phase component e−jbqω

q

as a Taylor series of ω,

e−jbqω
q

=

Lq∑
l=0

(−jbqωq)l

l!
+ εq, (2)

where Lq is the order of Taylor series for each polynomial
phase component and the Taylor approximation error εq sat-

5588978-1-4799-0356-6/13/$31.00 ©2013 IEEE ICASSP 2013



isfies

|εq| ≤ εq,max = max
bq∈Bq

ω∈Ω

(bqω
q)Lq+1

(Lq + 1)!
(3)

Combining all the polynomial terms, we have the following
approximated frequency response that is a polynomial of ω

Hpoly(ejω) =e−j(N/2)ω
P∑

p=0

apω
p

Q∏
q=1

Lq∑
l=0

(−jbqωq)l

l!

=e−j(N/2)ω
K∑

k=0

ckω
k

(4)

where the complex coefficients ck of ωk are given by the fol-
lowing convolutional relationship:

c =
[
a0 a1 · · · aP

]
∗ (5)[

1 −jb1 (−jb1)2

2! · · · (−jb1)L1

L1!

]
∗[

1 0 −jb2 0 (−jb2)2

2! 0 · · · 0 (−jb2)L2

L2!

]
∗ · · ·[

1 0 · · · 0︸ ︷︷ ︸
Q−1

−jbQ 0 · · · 0︸ ︷︷ ︸
Q−1

(−jbQ)2

2! · · · (−jbQ)LQ

LQ!

]
and

K = P +

Q∑
q=1

qLq. (6)

If we define the error

εA = max
ap∈Ap

ω∈Ω

apω
p (7)

and ignore the high order error terms, we can bound the first
stage approximation error by

|Hid(ejω)−Hpoly(ejω)| / e1 = εA(

Q∑
q=1

εq,max +

Q∏
q=1

εq,max)

(8)
If we separate the real and imaginary part of ck as cRk and

cIk and denote a pair of ideal k-th order linear phase FIR dif-
ferentiators with filter order N as

GR
k (ejω) = ωke−j(N/2)ω, (9)

GI
k(ejω) = jωke−j(N/2)ω, (10)

we can rewrite (4) as

Hpoly(ejω) =

K∑
k=0

cRkG
R
k (ejω) + cIkG

I
k(ejω) (11)

In the second approximation stage, we can approximate
the ideal differentiators with a pair of finite length differen-
tiators ĜR

k (ejω) and ĜI
k(ejω) according to the minimax cri-

terion. The approximation error is determined by the filter

order N . The frequency response of the final realized filter is

Ĥ(ejω) =

K∑
k=0

cRk Ĝ
R
k (ejω) + cIkĜ

I
k(ejω) (12)

If we optimize the differentiators ĜR
k (ejω) and ĜI

k(ejω) over
ω ∈ Ω according to the minimax criterion:∣∣∣ĜR

k (ejω)−GR
k (ejω)

∣∣∣ ≤ δRk , (13)∣∣∣ĜI
k(ejω)−GI

k(ejω)
∣∣∣ ≤ δIk, (14)

We can bound the second stage approximation error by

∣∣∣Ĥ(ejω)−Hpoly(ejω)
∣∣∣ ≤ e2 =

K∑
k=0

(|cRk |δRk + |cIk|δIk).

(15)
The total approximation error is bounded by the sum of

the first and second stage approximation errors

emax =
∣∣∣Ĥ(ejω)−Hid(ejω)

∣∣∣ ≤ e1 + e2 (16)

Fig. 2 shows the corresponding structure for the gener-
alized adjustable filter. The magnitude and phase responses
of the filter are directly controlled by the input vectors a =[
a0 a1 · · · aP

]
and b =

[
b1 b2 · · · bQ

]
. The syn-

thesizing coefficient vectors cR and cI are determined ac-
cording to (5).
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Fig. 2. A general filter structure with adjustable magnitude
and phase responses.

We can increase the sub-filter order N to decrease δRk and
δIk in order to reduce the second stage approximation error.
Or, we can increase the order of the polynomials Lq to de-
crease the first stage approximation error.

The Farrow structured FD filter in Fig. 1 can be viewed
as a special case of the proposed general structure. An ideal
fractional delay filter of order N has the following frequency
response

Hid(ejω) = e−j(N/2)ωe−jωd, (17)
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where d ∈ [−0.5, 0.5) is the fractional delay. Comparing with
the general expression in (1), we have a0 = 1, b1 = d. The
synthesizing coefficients are

cRk =


1
k!d

k

0
−1
k! d

k

0

cIk =


0 k mod 4 = 0
−1
k! d

k k mod 4 = 1

0 k mod 4 = 2
1
k!d

k k mod 4 = 3

(18)

Therefore, only one filter out of the differentiator pair ĜI
k(ejω)

and ĜR
k (ejω) is active for each k. Each subfilter Hk(ejω) in

the Farrow structure in Fig. 1 approximates

Hk(ejω)→ jk

k!
ej(N/2)ω(ωk). (19)

3. OPTIMAL POLYNOMIAL APPROXIMATION

For the Farrow structured FD filter, the Taylor series approx-
imation is accurate at the point of expansion, when ωd = 0.
The approximation degrades significantly as the product ωd
moves away from 0, which suggests poor performance for a
larger value of d, or at a higher frequency ω. Alternatively, an
optimal polynomial approximation that minimizes the Cheby-
shev norm of the approximation error can be applied to evenly
distribute the errors over the entire range of ωd

e−jωd =

L∑
k=0

ck(ωd)
k

+ ε, |ε| ≤ εmax (20)

so that the first stage approximation error is bounded by εmax.
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Fig. 3. Approximation error comparison between the optimal
polynomial approximation and the Taylor series approxima-
tion strategies for d ∈ [−0.5, 0.5], ωc = 0.9π.

Unlike the Taylor series case, there is no closed form for-
mula for the coefficients ck as they depend on the range of
ωd. Given the range of [(ωd)min, (ωd)max], the optimal coef-
ficients that minimize the Chebyshev norm of the approxima-
tion error can be solved using the Remez exchange algorithm
or convex optimization.

A comparison between the approximation errors with the
optimal polynomial and the Taylor series approximation for
various polynomial orders L is shown in Fig. 3, where the
fractional delay d ∈ [−0.5, 0.5] and cutoff frequency ωc =
0.9π. For the optimal polynomial approximation, the errors
exhibit equal ripples across the range of ωd while the er-
ror associated with the Taylor series approximation is zero
at ωd = 0 and increases monotonically as |ωd| increases. In
terms of the maximum approximation error, the optimal poly-
nomial approximation is always superior to the Taylor series
approximation with the same polynomial order L.

The adjustable fractional delay filter structure with the
optimal polynomial approximation strategy is shown in Fig.
4. The overall approximation error over the frequency band

Optimal 
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+ ++
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dd
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+
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+
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0

Rc 0

Ic
R

Lc I

Lc

Fig. 4. An adjustable fractional delay filter

[0, ωc] for fixed values of d is shown in Figs. 5 and 6. Using
the optimal polynomial approximation strategy, the approxi-
mation errors exhibit an equal ripple behavior in [0, ωc] when
d is fixed. However, when using Taylor series approximation
strategy, the approximation error increases significantly in the
high frequency band. This is caused by the fact that a large ωd
makes the first stage approximation error dominate the overall
approximation error.
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Fig. 5. Approximation error over [0, ωc] with the optimal
polynomial approximation strategy where d ∈ [0, 0.5], ωc =
0.9π, N = 40, L = 5.
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Fig. 6. Approximation error over [0, ωc] with the Taylor series
approximation strategy where d ∈ [0, 0.5], ωc = 0.9π, N =
40, L = 5.
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Fig. 7. Family of quadratic phase responses of the adjustable
quadratic phase filter, controlled by the parameter b2.

4. FILTERS WITH ADJUSTABLE QUADRATIC
PHASE RESPONSES

The Farrow structured fractional delay filter represents a case
where the single parameter d controls the linear phase re-
sponse of the filter. The generalized adjustable filter structure
can also be used to realize filters with an adjustable quadratic
phase response, which is applicable in the RF pulse design
problem [12, 13] in the MRI systems. For example, consider a
lowpass filter of order 256 with an adjustable quadratic phase
response,

Hid(ejω) =

{
e−j[(N/2)ω+b2ω

2] ω ∈ [0, ωp]

0 ω ∈ [ωs, π]
(21)

where the passband and stopband cutoff frequencies are given
by ωp = 0.095π and ωs = 0.11π. The range of the quadratic
phase coefficient b2 ∈ [−10, 10]. The polynomial order is
given by L = 3. The corresponding phase responses are
shown in Fig. 7, where the linear phase component e−j(N/2)ω

has already been removed so that only the quadratic phase
component is present.
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Fig. 8. Magnitude responses of LPF with adjustable cutoff
frequencies. Filter order N = 24, polynomial order L = 4
and cutoff frequency (control) parameter b ∈ [0.15π, 0.35π].
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Fig. 9. Magnitude responses of a bandpass filter with two
adjustable cutoff frequencies

5. FILTERS WITH ADJUSTABLE MAGNITUDE
RESPONSES

The generalized adjustable filter structure can also be used to
realize filters with adjustable magnitude responses in a sim-
ilar way as the Farrow structure. The feasibility of such a
structure was initially studied in [3]. For example, we can use
a single parameter b to control the cutoff frequency of an ad-
justable lowpass filter(LPF). We can write the magnitude re-
sponse of the variable LPF as A(ω) =

∑P
p=0 fp(b)ωp, where

polynomial function fp(b) are produced in a design process.
Fig. 8 shows a design example with the range of cutoff fre-
quencies b ∈ [0.15π, 0.35π]. It is easy to introduce another
control branch to formulate a bandpass filter with adjustable
cutoff frequencies as shown in Fig. 9.
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