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ABSTRACT
The problem of classifying graphs with respect to connectivity via
partial observations of nodes is posed as a composite hypothesis test-
ing problem with controlled sensing. An observation at a node is a
subset of edges incident to the node on the complete graph drawn
according to a probability model, which are modeled as condition-
ally independent given their neighborhoods. Connectivity is mea-
sured through average node degree and is classified with respect to
a threshold. A simple approximation of the controlled sensing test
is derived and simulated on Erdös-Rènyi Model A graphs to charac-
terize error probabilities as a function of expected stopping times. It
is shown that the proposed test achieves favorable tradeoffs between
the classification error and the number of measurements and further
outperforms existing approaches, especially at low target error rates.
Furthermore, the proposed test achieves asymptotically optimal er-
ror performance, as the error rate goes to zero.

Index Terms— Graph Classification, Controlled Sensing, Com-
plex Networks, Social Networks, Estimation Theory

1 Introduction
Graphs are commonly used to model active or feasible user connec-
tions in communication networks, interactions between entities in
social networks and propagation paths of diseases between people
by representing connections as edges between vertices (also referred
to as nodes). Graph connectivity can be measured through a vari-
ety of metrics, such as average node degree, clustering coefficients
or spectral graph properties that emphasize different notions of con-
nectivity [1].

In many applications, determining if the connectivity of a graph
model is high or low gives some insight into the operating point of
the system. An example where detecting if a graph is of high con-
nectivity is of interest is the monitoring of a disease spreading. In
[2], a disease spreading in a population is modeled as a graph, with
connectivity measured through shortest paths between people. In
this case, connectivity serves as a measure of how quickly a popula-
tion can be infected. Classifying this graph to be highly connected
can serve as a warning of potential pandemics. On the other hand, in
many communication network applications, it is desirable to detect
low connectivity. In particular, if a graph that models interference in
a wireless network is classified as low connectivity, users can reli-
ably communicate at high rates.

In order to classify graphs into high and low connectivity, it is
necessary to have a metric of connectivity as well as a method of
observing a graph. Since many graphs arising in practice are large, it
is necessary to perform classification by sampling some representa-
tive subset of the graph. Sampling is often performed using random
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walks[3] or randomly sampling nodes in the graph to estimate the
graph[1].

In this paper, we pose the problem of classifying a graph by
connectivity via sampling nodes as a composite sequential hypoth-
esis test with controlled sensing [4, 5]. In contrast to prior work,
mainly from the social network literature [6, 3, 1], which is vali-
dated on experimental data sets such as the DBLP authorship graph
in [6], the proposed framework allows for classification of graphs
with a provably low number of samples when the classification error
is desired to be low. While [1, 3] considered a fixed sampling budget
procedure, the procedure developed herein sequentially determines
the number of samples needed to classify the graph. For a typical
sequential hypothesis test, this results in a lower average number
of samples used than a fixed sample budget test with the same er-
ror probability. The control proposed in this paper finds a favorable
trade off between exploring the graph and exploiting knowledge of
the graph in order to improve the quality of graph observations for
classification. In contrast to prior work where each edge is assumed
to be fully observable [3, 1], we consider more general graph ob-
servation models, where both real edges and edges not in the graph
(“spurious edges”) are probabilistically observed. This handles im-
perfect observations of graphs and reduces to the fully observable
model as a limiting case.

In this paper, we first describe a controlled sensing test to clas-
sify graphs by average node degree where edges are probabilistically
observable. Then, we compare the controlled sensing test to a ran-
dom walk based technique, Frontier Sampling (FS) [3], on a graph
with probabilistic edge observation. When no spurious edges in the
graph are observable, it is shown that the controlled sensing test out-
performs FS with respect to error probabilities for a given number of
samples in the low and medium edge observation probability regime.
The controlled sensing test is also demonstrated on an observation
model that allows for spurious edges with respect to different levels
of spurious and true edge observation.

2 Hypothesis Testing for Graph Classification
For notation, we use regular font to denote scalars and bold-face to
denote vectors. A subscript on a letter which is used for a vector not
in bold-face indicates a particular component of the vector.

Interactions between nodes are described through the edges of a
fixed underlying graph G = (V,E) with sets V = VG and E = EG
denoting the vertex (node) and edge sets, respectively. An edge con-
nects two distinct nodes, and there is at most 1 edge between any pair
of nodes. The edge with endpoint vertices i and j is denoted eij , and
i and j are said to be adjacent if there is an edge between them. The
complement of a graphG,GC , is the graph (V,EC) whereEC is the
complement of E relative to the set of all possible edges connecting
pairs in V . The nodes are labeled V = {1, . . . , N}, and NG(i)
denotes the neighborhood of vertex i, which is the set of vertices
adjacent to i. The degree of vertex i is |NG(i)|.
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We let d̄G denote the average node degree of graph G. If dG is
the N × 1 vector of node degrees of G, then

d̄G =
1

N
d>G · 1N

where 1N is the vector of all ones of length N and > denotes trans-
position. Define the classes of graphs G0 and G1 as

G0 = {G : |V | = N, d̄G ≤ η}
G1 = {G : |V | = N, d̄G > η} (1)

Consider the composite binary hypothesis testing problem,

H0 : G ∈ G0, H1 : G ∈ G1

where at each time k, a node is selected for observation. Hence,
the control Uk at time k is such that Uk ∈ U = V

⋃
{S}, where

S denotes a stopping action. If eij ∈ E, nodes i and j interact
with probability p at each time step. Hence, if node i is selected
(Uk = i), the observation Yk ⊆ NG(i) of nodes connected to i
is drawn according to the probability mass function (pmf) P iG(y),
where

P iG(y) = p|y|(1− p)di−|y| (2)

This model is referred to as “Observation Model 1” (OM1). A simi-
lar model, “Observation Model 2” (OM2), allows for spurious edges
to be observed. In this case, the observations are of the form A∪B,
where A is a subset of NG(i) for which each edge is observed with
probability p and B is a subset of NGC (i) where each edge is ob-
served with probability q < p. Thus, the observations follow the
pmf P iG(y), where

P iG(y)=q|y∩E
C|(1−q)((N−1)−di)−|yC∩EC |p|y∩E|(1−p)di−|y

C∩E|

(3)

This reduces to OM1 as q ↘ 0 where 00 = 1.
Let un and yn denote the list of controls and observations from

time 1 to n respectively. If the test stops at time n, i.e., ifUn = S, we
make a decision δ(yn, un) ∈ {0, 1} about the hypothesis. Hence,
the sequential test γ = {φk, Ñ , δ} consists of a control policy

φk : Uk−1 × Yk−1 → U , k = 0, 1, . . . Ñ − 1

a stopping rule with stopping time Ñ , and a decision rule

δÑ : U Ñ−1 × YÑ−1 → {0, 1}.

The test is designed to minimize the expected stopping time under
constraints on the error probabilities, i.e.,

min
γ

Ei[Ñ ], i ∈ {0, 1} (4)

3 Sequential Test
The problem is related to the controlled sensing framework devel-
oped in [4, 7] and Chernoff’s procedure in [8] to sequentially test
between two composite hypotheses. Specifically, the problem is
readily posed as a controlled hypothesis testing problem where the
control can shape the quality of the observation at each time step.
Let Gi be the hypothesis which contains Ĝ, the estimate of the graph
G, and Gj the alternative hypothesis which does not contain Ĝ. We
propose the following sequential test:

1. At each time k, find the Maximum-Likelihood Estimate (MLE)
of G, Ĝ = Ĝ(yk, uk).

2. Find î(k), the estimate of the hypothesis at time k, which is 1 if
d̄Ĝ > η and 0 otherwise.

3. The controller stops at time k and declares î(k) if

min
G̃:G̃∈Gj

log
PĜ(yk, uk)

PG̃(yk, uk)
> log β, (5)

where PG(yk, uk) is the joint distribution of the observations and
the controls induced by the observation model PuG(y) and the
causal control distributions q(uk|uk−1, yk−1) specified by the
control policy. The graph G̃ is the nearest graph under the alter-
native hypothesis. Thus, the left hand side (LHS) of (5) is simply
the likelihood ratio of the joint distributions given the current
graph estimate and the nearest graph in the alternative hypothesis.
If OM1 is used, it is sufficient to stop if î(k) = 1. The parameter
β is a design threshold.
If the decision is to continue sampling, the controller chooses a
control action Uk+1 drawn from the distribution

q∗k+1(u) , P{Uk+1 = u|Îk = 0}

where the probability vector q∗k+1 is obtained as a solution to the
following maxmin optimization problem

max
q(u),u∈V

min
G̃:G̃∈Gj

N∑
u=1

c(u, uk, Ĝ)q(u)D(Pu
Ĝ
, Pu

G̃
) (6)

where D(P1, P2) denotes the Kullback-Leibler (KL) distance be-
tween the distributions P1 and P2 [9] and c(u, uk, Ĝ) is a user-
designed positive weighting function whose purpose will be dis-
cussed in section 4.
If the KL distance between distributions is zero under at least one
control, we modify the test by using a uniform control at times
dale for l ∈ N and a > 1 fixed. By [5], this test has asymptoti-
cally optimal error decay with the sample size under some techni-
cal conditions omitted due to space constraints.

A simple modification to this procedure is to truncate the test to a
fixed number of samples, akin to the truncated sequential probability
ratio test (SPRT) to sequentially decide between two hypotheses with
independent and identically distributed observations. In the case of
the truncated SPRT, the test retains good stopping times and error
performance (for suitably large number of samples) while avoiding
pitfalls such as sample paths where a large number of samples are
needed to make a decision [10].
It is straightforward to extend the test to the case where the controls
are subsets of V to sample multiple nodes at each time. The graph
estimate and stopping rule are identical, while the control policy has
the same structure. Details are omitted due to space constraints.

3.1 Control Policy

The optimization problem in (6) can be viewed as a zero sum game.
Let Ĝ ∈ Gi. Then, player 1, the maximizer, tries to choose a dis-
tribution q over the vertex set V , while player 2 chooses the nearest
graph in Gj for j 6= i. We will show that this can be done by insert-
ing (resp. removing) edges to (resp. from) Ĝ if Ĝ ∈ G0 (resp. G1).
Since a graph can have O(N2) edges on N vertices, the number of
edges which can be inserted or removed from Ĝ can be significantly
larger than N . In particular, when η is chosen sufficiently high and
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the underlying graph is sufficiently sparse, there exist enough edges
in GC (G) such that the average node degree can be increased (de-
creased) so that player 1 is forced to adopt a uniform control. By
good design of c(u, uk, Ĝ), this can be alleviated by trading explo-
ration with exploitation. Let d̂ and d̃ be the degree vectors of the
graphs Ĝ and G̃ respectively. In the case of model 1,

D(Pu
Ĝ
, Pu

G̃
) =

d̂u∑
i=0

(
d̂u
i

)
pi(1− p)d̂u−i log

(
pi(1− p)d̂u−i

pi(1− p)d̃u−i

)

= α′u(d̃u − d̂u) log
1

1− p

where α′u is 1 if d̂u > 0 and is 0 otherwise. Note that this distance
is infinite if Nu(Ĝ) 6⊆ Nu(G̃), since every edge observed is known
to be in the underlying graph. Similarly, under OM2, D(Pu

Ĝ
, Pu

G̃
) =

α′ur(d̃u − d̂u) for some constant r (regardless of the relation of Nu
in both graphs). Thus, in both cases, (6) can be written as:

max
q(u),u∈V

min
G̃:G̃∈Gj

N∑
u=1

αuq(u)d̃u

where αu = α′uc(u, u
k, Ĝ).

In practice, it can be useful to replace α′u with

α′u =

{
1 if d̂u > 0

f(u, uk, Ĝ) o.w.

where f is an experimenter-designed non-negative weighting func-
tion chosen to penalize unexplored nodes and encourage exploiting
explored nodes. While the choice of f(u, uk, Ĝ) and c(u, uk, Ĝ)
do not change the asymptotic error performance, a good choice will
improve non-asymptotic error performance.

We begin with the case where Ĝ ∈ G0. The optimization prob-
lem is easily posed in terms of the incidence matrix of ĜC , MĜC

[11]. The incidence matrix of G is a matrix with |EG| columns,
where the column corresponding to edge eij ∈ EG has 1’s in indices
i and j and zeros elsewhere. Note that the sum of the i-th row of an
incidence matrix is the degree of the i-th vertex. LetM ′

ĜC denote the
matrix obtained from MĜC by multiplying the i-th row of MĜC by
αi, i = 1, . . . , N . PN is theN -dimensional probability simplex and
IS = {x ∈ {0, 1}|EĜC | : x has d|η − d̄Ĝ|

N
2
e non-zero entries}

(where IS stands for “insertion set” since we are inserting edges
into ĜC ). Hence, the problem is

max
q∈PN

min
x∈IS

qM ′
ĜCx. (7)

That is, when player 1 picks a distribution, player 2’s policy is to
insert edges in Ĝ until the new graph is in G1. Player 2 does so by
adding edges which do not exist in Ĝ whose endpoints are of lowest
sum weight, akin to the optimization for the stopping rule shown
later. Since each edge inserted increases the average node degree by
2
N

, d|η − d̄Ĝ|
N
2
e edges must be inserted into Ĝ to get a graph in G1.

A satisfactory relaxation of (7) for computational purposes is

max
q∈PN

min
{x∈R|E

ĜC |
:x≥0,1>x=d|η−d̄

Ĝ
|N/2e}

qM ′
ĜCx.

This can be rewritten to the equivalent linear program (LP):

max
q,v

v

subject to:
{ ∑

u qu[M ′
ĜC ]uj ≥ v j = 1, . . . , |EĜC |∑

u qu = 1, 0 ≤ qu ≤ 1

which can be solved using standard LP techniques. For OM1, this
completely specifies the control policy as Ĝ /∈ G1.

The case for Ĝ ∈ G1 in OM2 is similar. We see thatD(Pu
Ĝ
,Pu
G̃

)=

α|r|(d̂u − d̃u). Proceeding in the derivation as before, MĜC is re-
placed with −MĜ (to correspond to edge removals) to form the
optimization problem. The resultant optimization problem is the
same, except with M ′

ĜC replaced with M ′
Ĝ

and IS is defined iden-
tically, except as a subset of R|EĜ

|.

3.2 Maximum-Likelihood Graph Estimation

In this section, we propose a simple MLE of G - more advanced es-
timators can improve detection performance at higher computational
cost with more accurate graph representation, particularly in the case
of more sophisticated models. A graph G is given by its adjacency
matrix AG, where [AG]ij = 1 if eij ∈ EG and is 0 otherwise.

Under OM1, it is clear that the MLE of the graph, Ĝ, is simply
the graph consisting of all edges observed up to the current time
(since no edge observed is spurious). Thus, we consider OM2.

At time k and for all i ∈ V , define Ti(k) = {j ∈ {1, . . . , k} :
Uj = i} as the set of all times up to k when node i is selected. We
assume that the observations of the various nodes are independent
conditioned on their respective neighborhoods

P (yk|G) =

N∏
i=1

P (yTi(k)|Ni(G)) (8)

where yTi(k) = {yj : j ∈ Ti(k)}.
Define Tij(k) = Ti(k)∪Tj(k). This is the number of times edge

eij can be potentially observed up to time k. Denote the number
of times edge eij is actually observed up to time k by lij(k). If
eij ∈ E (resp. eij /∈ E), the probability of the observation sequence
is plij(k)(1− p)|Tij(k)|−lij(k) (resp. qlij(k)(1− q)|Tij(k)|−lij(k)).

Thus, Ĝ at time k is [AĜ]ij = 1 if plij(k)(1−p)|Tij(k)|−lij(k) >

qlij(k)(1 − q)|Tij(k)|−lij(k) and [AĜ]ij = 0 otherwise or if i = j.
The MLE can be calculated in O(N) time.

3.3 Stopping Rule

The form of (5) under OM1 is simple:

log
PĜ(yk, uk)

PG̃(yk, uk)
=

k∑
j=1

log
PĜ(yj , uj)

PG̃(yj , uj)

= − log(1− p)
k∑
j=1

(d̃uj − d̂uj )

= − log(1− p)
N∑
i=1

(d̃i − d̂j)|Ti(k)|

Collecting constants gives the stopping rule

min
G̃∈G1,EG̃

⊃E
Ĝ

N∑
i=1

(d̃i − d̂j)|Ti(k)| > log β (9)

This can be solved in quadratic (in N ) time by noting that we can
find the minimizer by inserting edges into Ĝ, and adding edge eij
increases the sum by |Ti(k)| + |Tj(k)| = |Tij(k)| independent
of the other edges (so insertion order does not matter). EĜC and
|Tij(k)| can be calculated by finding the non-diagonal zeros of AĜ
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and updating Tij(k) after every sample. To find G̃, sort the edges
by |Tij(k)| in ascending order and insert the first d|η − d̄Ĝ|N/2e
edges into Ĝ. Thus, the LHS of the stopping rule is the sum of the
d(η − d̄Ĝ)N

2
e smallest values of |Tij(k)|.

For OM2, we start with the case where Ĝ ∈ G0. Then,

log
PĜ(yk, uk)

PG̃(yk, uk)
=log

(∏
eij∈EĜ

plij(k)(1− p)|Tij(k)|−lij(k)∏
eij∈EG̃

plij(k)(1− p)|Tij(k)|−lij(k)

×

∏
eij∈EĜC

qlij(k)(1− q)|Tij(k)|−lij(k)∏
eij∈EG̃C

qlij(k)(1− q)|Tij(k)|−lij(k)

)
(10)

The numerator is solely a function of Ĝ and can be precomputed. In-
serting or removing an edge from a graph corresponds to removing
or adding the edge to the complement graph. We can split the mov-
ing of edges from G̃C to G̃ into two cases for the minimization. Let
δij(k) denote the change in (10) when edge eij is moved from ĜC

to Ĝ. If eij ∈ EG̃C and |Tij(k)| = 0, δij(k) = 0. If eij ∈ EG̃C

and |Tij(k)| 6= 0, δij = lij(k) log q
p

+ (|Tij(k)| − lij(k)) log 1−q
1−p .

Note that δij is independent of edges other than eij .
Thus, the LHS of (5) under OM2 can be calculated by noting

that EĜ ⊂ EG̃ and starting with EĜ = EG̃. Then, the left hand
side is the sum of the d(η − d̄Ĝ)N

2
e smallest δij corresponding to

eij ∈ EĜC . This can be solved in O(N2) time.
In the case where Ĝ ∈ G1, replace all references to G̃C with

G̃, and note that EG̃ ⊂ EĜ. Since we move edges from G̃ to G̃C ,
replace δij with −δij , and the rest of the algorithm is identical.

In practice, it is useful to start the algorithm with some initial
observations of each node (or a subset of nodes) in order to reduce
the stopping time as in remark 7.1 of [8].

4 Discussion and Results
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Fig. 1: Graph G with 20 nodes with average node degree 8.9

For concreteness and conciseness, we present classification per-
formance on an Erdös-Rènyi (ER) generated graph with uniform
edge probability 1

2
on 20 nodes with average node degree 8.9 shown

in Fig.1. ER graphs are of interest from a performance analysis per-
spective as proving properties of an appropriate family of ER graphs
shows that the property holds for almost all graphs [11]. As per re-
mark 7.1 in [8], the procedure presented is of interest when η is close
to d̄G. Thus, we show results for η = 8.8 and η = 9.0 with the tests
truncated to 1000 samples. c(u, uk, Ĝ) is the number of times a
node has been sampled up to time k, or 1 if it has not been sampled,
i.e.,

c(u, uk, Ĝ) =

{
|Tu(k)| if |Tu(k)| > 0
1 o.w.

The standard deviation of all probabilities presented down to 10−3

is at least an order of magnitude below the probabilities. The results

100 200 300 400
−2.5

−2

−1.5

−1

−0.5

Stopping Time

lo
g 10

(P
er

ro
r)

Controlled Sensing: η=8.8

 

 

p=0.8,q=0.3
p=0.9,q=0.1

100 200 300 400

−2

−1.5

−1

Stopping Time

lo
g 10

(P
er

ro
r)

Controlled Sensing: η=9.0

 

 

p=0.8,q=0.3
p=0.9,q=0.1

50 100 150 200

−3

−2

−1

Stopping Time/Budget

lo
g 10

 (
P

er
ro

r)

Controlled Sensing vs FS: p=0.4

 

 

Controlled Sensing
FS with 1 Walker

20 40 60 80 100 120

−3

−2

−1

0

Stopping Time/Budget

lo
g 10

 (
P

er
ro

r)

Controlled Sensing vs FS: p=0.7

 

 

Controlled Sensing

FS with 1 Walker

Fig. 2: First Row: Controlled sensing with spurious observations.
Second Row: Controlled sensing versus FS without spurious obser-
vations. Note that connected lines are drawn only for readability.

for OM1 with p = 0.4 and p = 0.7 are given in the bottom row of
Fig.2.The controlled sensing test with expected stopping time E[N ]
performs strictly better than the FS with budget E[N ] with η = 8.8
(since false alarms are not possible under this model, this is the hard-
est value of η to classify) in the sense of lower error probabilities.
This is in part due to the stopping rule, which accounts for p while
FS explicitly assumes p = 1. The control is also tailored to capture
the structure ofGwhich controls the average node degree rather than
the general structure ofG as in the case of FS. There is also a thresh-
old phenomena in detection, where the probability of error falls off at
a very high rate when controlled sensing has (on average) observed
enough edges to conclude the graph has average node degree greater
than η. It was also found that FS offered little improvement under
this graph model until the number of walkers was on the order of
N since it is unlikely then for a walker to get trapped in a small
neighborhood in the graph.

Under OM2, FS is not directly applicable due to the spurious
edges allowing a walker to transition between non-neighbors in G.
Thus, we compare two controlled sensing tests to study the rela-
tive performance difference between tests with different observation
probabilities for both true and spurious edges (p = 0.8, q = 0.3 and
p = 0.9, q = 0.1) in the bottom row of 2. Lowering q and increas-
ing p significantly reduces the number of samples needed to achieve
a given error probability. The dashed least-squares fit lines shown
for the tails of the data indicate that in these regimes the error prob-
ability decays approximately exponentially. This is consistent with
the asymptotic exponential decay of the error probability with the
stopping time in Chernoff’s procedure and controlled sensing [8, 5].

5 Conclusions and Future Work
In this paper, we proposed a controlled sensing based test for classi-
fying a graph based on connectivity using probabilistic observations
of its nodes. This test was shown to outperform classic random walk
based approaches at low target error rates. The asymptotic optimal-
ity of the proposed test follows from the optimality of the modified
Chernoff test[5]. Future work includes developing suboptimal dis-
tributed controlled sensing tests that admit simpler computations and
that can be easily parallelized. Another key direction for future work
is to exploit the sparsity present in many networks such as the DBLP
authorship data set and to develop approximate algorithms for other
connectivity measures.
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