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ABSTRACT

We consider the use of error-control codes and decoding algorithms
to perform reliable classification using unreliable and anonymous
human crowd workers by adapting coding-theoretic techniques for
the specific crowdsourcing application. We develop an ordering
principle for the quality of crowds and describe how system perfor-
mance changes with the quality of the crowd. We demonstrate the
effectiveness of the proposed coding scheme using both simulated
data and real datasets from Amazon Mechanical Turk, a crowd-
sourcing microtask platform. Results suggest that good codes may
improve the performance of the crowdsourcing task over typical
majority-vote approaches.

Index Terms— crowdsourcing, classification, error-control
codes

1. INTRODUCTION

With the widespread growth of inexpensive computing and network-
ing infrastructures, crowdsourcing has emerged as a new paradigm
for human participation in distributed inference tasks [1–3]. Al-
though both crowdsourcing and conventional team decision mak-
ing [4] involve human decision makers, there are three major differ-
ences. First, the number of participants involved in crowdsourcing
may be large. Second, contrary to typical mathematical models of
traditional team decision making [8], members of the crowd may be
unreliable or malicious [5–7] especially since they are often anony-
mous [9, 10]. Third, workers may not have sufficient domain ex-
pertise to perform full classification and may only be able to make
simpler binary distinctions [11].

Hence achieving reliable crowdsourcing of difficult inference
tasks raises novel signal processing questions. Ensuring reliable sig-
nal processing in the face of unreliable or malicious workers has
previously been considered for numerical analysis [12] and binary
classification tasks [13, 14]. In [13, 14], the authors consider the
problem of task allocation in a crowdsourcing system. An iterative
algorithm based on belief propagation was proposed for inferring the
final answer from the workers’ responses. This algorithm is shown
to perform same as the best possible algorithm. They also provide
numerical results for a large system size and show that their ap-
proach outperforms the majority approach. In contrast, we consider
crowdsourcingM -ary classification tasks, such as multi-class object
recognition from images into fine-grained categories [11]. Our aim
in this work is to design the system to minimize misclassification
probability by using a minimum Hamming distance decoder. In par-
ticular, we consider the use of codes for distributed classification that
were originally developed in the context of large sensor networks to
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maximize classification performance while maintaining fault toler-
ance [15, 16]. We demonstrate the efficacy of this coding approach
using simulations and through real data from Amazon Mechanical
Turk [17], a paid crowdsourcing microtask platform. An ordering
principle for the quality of crowds is also developed.

Sec. 2 develops a mathematical model of the crowdsourcing
problem and Sec. 3 derives error performance expressions for both
coding- and majority-based approaches. Sec. 4 introduces an order-
ing principle for quality of crowds based on mean worker quality
and demonstrates through examples that systems with good codes
outperform systems that use majority vote. Experimental results us-
ing real data from Amazon Mechanical Turk are provided in Sec. 5
and Sec. 6 concludes the paper.

2. CODING FOR CROWDSOURCING

Consider an image with an object to be classified into one of M
fine-grained categories. Since object classification is often difficult
for machine vision algorithms, human workers may be used for this
task. In a typical crowdsourcing microtask platform, a task manager
creates simple tasks for the workers to complete, and the results are
combined to produce the final result. Due to the low pay of workers
and the difficulty of tasks, individual results may be unreliable.

As an example, consider the task of classifying a dog image into
one of four breeds: Pekingese, Mastiff, Maltese, or Saluki. Since
workers may not be canine experts, however, they may not be able
to directly classify and so we should ask simpler questions. For ex-
ample, the binary question of whether a dog has a snub nose or a
long nose differentiates between {Pekingese, Mastiff} and {Maltese,
Saluki}, whereas the binary question of whether the dog is small
or large differentiates between {Pekingese, Maltese} and {Mastiff,
Saluki}. Using code matrices, we now show how to design binary
questions for crowd workers that allow the task manager to reliably
infer correct classification even with unreliable workers.

Let the task presented to the crowd be a classification task with
M equiprobable classes represented by the hypotheses H0, H1, . . . ,
HM−1. Let N be the number of workers taking part in the task.
As part of modeling, let us suppose worker j decides the true class
(local decision yj) with probability pj and makes the wrong local
classification with uniform probability:

p(yj |Hl) =

{
pj if yj = l
1−pj
M−1

otherwise.
(1)

LetA = {alj} be a binaryM×N code matrix used to design binary
questions. For every worker j, let aj be the corresponding column
of A. Each hypothesis Hl ∈ {H0, H1, · · · , HM−1} is associated
with a row in the code matrix A. The local workers send a binary
answer uj based on the decision yj and the corresponding column
of code matrix A.
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Fig. 1. A schematic diagram showing binary questions posed to
workers and the decoding rule used by the task manager.

An illustrative example is shown in Fig. 1 for the dog breed clas-
sification task above. Let the columns corresponding to the ith and
jth workers be ai = [1010]′ and aj = [1100]′ respectively. The
ith worker is asked: “Is the dog small or large?” since she is to
differentiate between the first (Pekingese) or third (Maltese) breed
and the others. The jth worker is asked: “Does the dog have a snub
nose or a long nose?” since she is to differentiate between the first
two breeds (Pekingese, Mastiff) and the others. The task manager
makes the final classification decision as the hypothesis correspond-
ing to the code word (row) that is closest in Hamming distance to
the received vector of decisions. Good codes may be designed us-
ing simulated annealing or cyclic column replacement, cf. [15]. The
optimality criterion for the code design is to minimize the misclassi-
fication probability which is a function of the code matrix as shown
later in Sec. 3.

2.1. Unreliable Workers

Although distributed classification in sensor networks and in crowd-
sourcing are structurally similar, an important difference is the
anonymity of crowds. Since the crowd is anonymous, we cannot
identify the specific reliability of a specific worker as could poten-
tially be done with a sensor. Hence we assume that each worker
j in the crowd has an associated reliability pj , drawn i.i.d. from a
common distribution that characterizes the crowd.

Two crowd reliability models are considered herein. In a
spammer-hammer model, the crowd consists of two kinds of work-
ers: spammers and hammers. Spammers are unreliable workers that
make a decision at random (pj = 1/M ) whereas hammers are reli-
able workers that make a decision with high reliability. The quality
of the crowd, Q, is governed by the fraction of hammers. In a Beta
model, the reliabilities of workers are drawn from a Beta distribution
with parameters α and β.

3. CLASSIFICATION PERFORMANCE

Having defined a coding approach to reliable crowdsourcing, we
determine its performance in terms of average error probability for
classification. A traditional approach in crowdsourcing has been to
use a majority vote to combine local decisions. In order to com-
pare our coding approach to the majority approach, we also derive
its classification performance.

For M -ary classification, each worker’s local decision is mod-
eled as log2M -bit valued, but since workers only answer binary

questions, the N workers are split into log2M groups with each
group sending information regarding a single bit. The task manager
uses a majority rule to decide each of the log2M bits separately and
then concatenates to make the final classification.

Suppose N workers take part in an M -ary classification task.
Let p denote the reliabilities of these workers, such that pk for k =
1, . . . , N are i.i.d. random variables with mean µ. We define this to
be an (N,M,µ) crowdsourcing system.

3.1. Error Probability for General Codes

Consider a system with minimum Hamming distance decoding.

Proposition 1. Consider an (N,M,µ) crowdsourcing system. The
expected probability of error using code matrix A = {alj} is:

Pe(µ) =
1

M

∑
i,l

N∏
j=1

[µalj + (1− µ)
(M − 1)

∑
k 6=l

akj

 (2ij − 1)

+ (1− ij)
]
Cli (2)

where i = [i1, · · · , iN ] ∈ {0, 1}N is the received codeword and Cli
is the cost associated with a global decision Hl when the received
vector is i. This cost is:

Cli =

{
1− 1

r
if i is in decision region of Hl

1 otherwise.
(3)

where r is the number of decision regions of i; r can be greater than
one when there is a tie at the task-manager and the tie-breaking rule
is to choose one of them randomly.

Proof. Let Pe,p denote the probability of error given the reliabilities
of the N workers. Then, if uj denotes the bit sent by the worker j
and the global decision is made using the Hamming distance crite-
rion,

Pe,p =
1

M

∑
i,l

P (u = i|Hl)Cli . (4)

Since local decisions are conditionally independent, P (u = i|Hl) =∏N
j=1 P (uj = ij |Hl). Further,

P (uj = ij |Hl) = ijP (uj = 1|Hl) + (1− ij)P (uj = 0|Hl)
= (1− ij) + (2ij − 1)P (uj = 1|Hl)

= (1− ij) + (2ij − 1)

M∑
k=1

akjP (yj = k|Hl)

= (1− ij) +

pjalj + (1− pj)
(M − 1)

∑
k 6=l

akj

 (2ij − 1)

where yj is the local decision made by worker j. Since reliabilities
pj are i.i.d. with mean µ, the desired result follows.

3.2. Error Probability for Majority Voting

Now consider the majority rule, with N divisible by log2M .

Proposition 2. Consider an (N,M,µ) crowdsourcing system. The
expected probability of error using majority rule is:

Pe(µ) = 1− 1

M

[
1 + SÑ,(1−q)

(
Ñ

2

)
− SÑ,q

(
Ñ

2

)]log2M
(5)
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where Ñ = N
log2M

, q = M(1−µ)
2(M−1)

, and SN,p(·) is the survival func-
tion (complementary cumulative distribution function) of binomial
random variable B(N, p).

Proof. In a majority approach, Ñ = N
log2M

workers send informa-
tion regarding the ith bit of their local decision, i = 1, . . . , log2M .
For a correct global decision, all bits have to be correct. Consider
the ith bit and let P ic,p be the probability of the ith bit being correct
given the reliabilities of the Ñ workers sending this bit. Then,

P ic,p =
Pd + 1− Pf

2
, (6)

where Pd is the probability of detecting the ith bit as ‘1’ when the
true bit is ‘1’ and Pf is the probability of detecting the ith bit as ‘1’
when the true bit is ‘0’. Note ‘0’ and ‘1’ are equiprobable since all
hypotheses are equiprobable. Under majority rule for this ith bit,

Pd =

Ñ∑
j=b Ñ

2
+1c

∑
∀Gj

∏
k∈Gj

(
1− M(1− pk)

2(M − 1)

) ∏
k/∈Gj

M(1− pk)
2(M − 1)

where Gj is a set of j out of Ñ workers and M(1−pk)
2(M−1)

is the prob-
ability of the kth worker making a wrong decision for the ith bit.
Similarly,

Pf =

Ñ∑
j=b Ñ

2
+1c

∑
∀Gj

∏
k∈Gj

M(1− pk)
2(M − 1)

∏
k/∈Gj

(
1− M(1− pk)

2(M − 1)

)

Now the overall probability of correct decision is given by Pc,p =∏log2M
i=1 P ic,p. Since reliabilities are i.i.d., the expected probability

of correct decision Pc is:

Pc =

log2M∏
i=1

E[P ic,p] (7)

where expectation is with respect to p. Since reliabilities are i.i.d.:

E[Pd] =

Ñ∑
j=b Ñ

2
+1c

(
Ñ

j

)
(1− q)jq(Ñ−j) = SÑ,(1−q)

(
Ñ

2

)
, (8)

E[Pf ] =

Ñ∑
j=b Ñ

2
+1c

(
Ñ

j

)
qj(1− q)(Ñ−j) = SÑ,q

(
Ñ

2

)
. (9)

Using (6), (7), (8), and (9), we get the desired result.

4. SYSTEM CHARACTERIZATION

We can define an ordering principle for quality of crowds in terms of
the quality of their distributed inference performance.

Theorem 1. [ORDERING OF CROWDS] Consider crowdsourcing
systems involving crowd C(µ) of workers with i.i.d. reliabilities with
mean µ. Crowd C(µ) performs better than crowd C(µ′) for inference
if and only if µ > µ′.

Proof. Follows since average error probabilities depend only on the
mean of the reliabilities of the crowd.

Since the performance criterion is average error probability, this
can be regarded as a weak criterion of crowd-ordering in the mean
sense. Thus, with this crowd-ordering, better crowds yield better
performance in terms of average error probability.
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Fig. 2. Coded crowdsourcing system error probability as a function
of worker reliability.

4.1. Error probability decreases with more reliable crowds.

Proposition 3. Average error probability reduces with increasing
quality of the crowd.

Proof. Follows from expressions (2) and (5).

To get more insight, we simulate a crowdsourcing system with
coding as follows: N = 10 workers take part in a classification task
with M = 4 equiprobable classes. A good code matrix C is found
by simulated annealing [15]:

C = [5, 12, 3, 10, 12, 9, 9, 10, 9, 12]. (10)

Here and in the sequel, we represent code matrices as a vector of M
bit integers. Each integer rj represents a column of the code matrix
C and can be expressed as rj =

∑M−1
l=0 clj × 2l. For example, the

integer 5 in column 1 of C represents c01 = 1, c11 = 0, c21 = 1
and c31 = 0.

Let us look at the setting where all workers have the same re-
liability pi = p. Fig. 2 shows the probability of misclassification
as a function of p. As is apparent, probability of misclassification
reduces with reliability and approaches 0 as p→ 1, as expected.

4.2. Coding is better than majority vote

Now we compare the performance of the coding approach to the
majority approach. Fig. 3 shows misclassification probability as a
function of crowd quality for N = 10 workers taking part in an
(M = 4)-ary classification task. The spammer-hammer model,
where spammers have reliability p = 1/M and hammers have re-
liability p = 1 is used. The figure shows a slight improvement in
performance over majority vote when code (10) is used.

We consider a larger system with increased M and N . A good
code matrix C for N = 15 and M = 8 is found by cyclic column
replacement:

C = [150, 150, 90, 240, 240, 153, 102, 204, 204, 204,

170, 170, 170, 170, 170] (11)

The code matrix for the system with N = 90 and M = 8 is formed
sub-optimally by concatenating the columns of (11) six times. Fig. 4
shows the performance when M = 8 and N takes the two values:
N = 15 and N = 90. These figures suggest that the gap in per-
formance generally increases for larger system size. Similar obser-
vations hold for the Beta model of crowds, see Figs. 5 and 6. A
rigorous study on the effect of system size on classification perfor-
mance is left for future work. Good codes perform better than ma-
jority vote as they diversify the binary questions which are asked to
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Fig. 3. Error probability as a function of crowd quality using coding
and majority approaches with the spammer-hammer model, (M =
4, N = 10).

the workers. From extensive simulation results, we have found that
the coding approach is not very sensitive to code matrix C as long
as we have approximately equal number of ones and zeroes in ev-
ery column. However, if we use any code randomly, performance
degrades substantially.
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Fig. 4. Error probability as a function of crowd quality using coding
and majority approaches with the spammer-hammer model, (M =
8).
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Fig. 5. Error probability as a function of β using coding and majority
approaches with the Beta(α = 0.5, β) model, (M = 4, N = 10).

5. EXPERIMENTAL RESULTS

In this section, we test the proposed coding approach on six publicly
available Amazon Mechanical Turk data sets—quantized versions of
the data sets in [17]: the anger, disgust, fear, joy, sadness and sur-
prise datasets of the affective text task. Each of the data sets consist
of 100 tasks with N = 10 workers taking part in each of the tasks.
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Fig. 6. Error probability as a function of β using coding and majority
approaches with the Beta(α = 0.5, β) model, (M = 8).

Each worker reports a value between 0 and 100, and there is a gold-
standard value for each task. For our analysis, we quantize values
by dividing the range into M = 8 equal intervals. We compare the
majority approach with our proposed coding approach. A good op-
timal code matrix for N = 10 and M = 8 is designed by simulated
annealing [15]:

C = [113, 139, 226, 77, 172, 74, 216, 30, 122] (12)

Table 1 compares the performance of the coding and majority
approaches. The values in Table 1 are the fraction of wrong deci-
sions made, as compared with the gold-standard value. As the table
indicates, the coding based approach outperforms the majority ap-
proach in 4 out of the 6 cases considered. We expect the gap in
performance to increase as problem size M and crowd size N in-
crease.

Dataset Coding approach Majority approach
Anger 0.31 0.31
Disgust 0.26 0.20
Fear 0.32 0.30
Joy 0.45 0.47
Sadness 0.37 0.39
Surprise 0.59 0.63

Table 1. Fraction of errors using coding and majority approaches

6. CONCLUSION

We have proposed the use of coding for reliable classification us-
ing unreliable crowd workers and shown that coding in crowdsourc-
ing can more efficiently use human cognitive energy over traditional
majority-vote methods. Since minimum Hamming distance decod-
ing is equivalent to MAP decoding in this setting, the anonymity of
unreliable crowd workers is not problematic. The benefits of coding
are especially large for applications where the number of classes is
large, such as fine-grained image classification for building encyclo-
pedias like Visipedia1. There one might need to classify among more
than 161 breeds of dogs or 10000 species of birds.

Going forward, many further questions may be addressed; two
examples are as follows. Can better cognitive and attentional mod-
els of human crowd workers provide better insight and design prin-
ciples? When considering average error probability, the ordering of
crowd quality depends only on a first-moment characterization; what
about finer characterizations of system performance?

1http://www.vision.caltech.edu/visipedia/
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