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ABSTRACT

We consider the problem of detecting a target signature which is
known (up to an amplitude factor) to belong to a (possibly very)
large library of signatures. Thus we know how each signature to be
detected looks like, but we do not know which one is activated under
H1. We propose a minimax approach for this problem aimed at max-
imizing the worst detection performance. Optimization issues and
connections with One-Class classifiers are discussed and illustrated
geometrically. Numerical results comparing the proposed approach
to the classical sparse-coding dictionary learning technique K-SVD
are provided on astrophysical hyperspectral data.

Index Terms— Detection, minimax, sparsity, dictionary learn-
ing, SVM

1. PROBLEM STATEMENT AND PREVIOUS WORKS

We consider in this work the problem of detecting a target signature
which is known (up to an amplitude factor) to belong to a (possibly
very) large library of signatures. Thus we know how each signature
to be detected looks like, but we do not know which one is activated
underH1.

A typical illustration of this problem is the detection of known
waveforms in data communications, in which case the man-made
waveforms are designed using orthogonality principles to ease the
discrimination between the active signals underH1 [1–4].

Other instances of this problem occur in Hyperspectral Imag-
ing (HSI) for example, where the target signatures are usually im-
posed and cannot be optimized to improve detection. In some cases,
the possible set of target spectra is naturally large (rare minerals de-
tection, infected trees, mine detection, ...). In another set of cases,
the possible target spectra are few but the corresponding data come
with systematic perturbations that can be modeled, leading again to
a large set of possible target spectra [5, 6].

The specific application considered in this article regards the de-
tection of spectral lines of primordial galaxies in HSI data [7–11].
These sources have typical spectral shapes that can be simulated to
generate a library of lines. In the data, each spectral line, appears,
if present, shifted in wavelengths by an a priori unknown amount
(which depends on the galaxies’ distances), leading to a very large
library of possible features underH1.

Detection methods can be divided in two main classes. The first
class assumes that the target is known and leads to techniques rely-
ing on Matched Filter principles (those are called spectral matching
(SM) methods in the HSI literature). When such knowledge is not
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available, the other class of approaches is aimed at discriminating
the pixels that are different (in ways that are specific to each method)
from the background. Those are called anomaly detection (AD) ap-
proaches [12].

When a reliable knowledge about the target features is available,
SM techniques have larger detection power than AD techniques
because SM indeed benefits from this knowledge. When this knowl-
edge is encapsulated in a spectral library, and when this library is
large, detection tests traditionally operate in subspaces of reduced
dimensions which are obtained by various means (sample mean,
SVD, or endmember selection techniques) [13, 14].

Dimension reduction has obvious interests in terms of complex-
ity: the computational cost for testing the full library is, in some of
the cases cited above, simply prohibitive. In addition, reducing the
dimension may lead to globally improved detection power. How-
ever, and this observation is actually at the origin of the present
work, this comes at a price: low-dimensionality tests usually present
very low power for some targets − with obvious and potentially
highly damageable consequences in health or mine detection sur-
veys for instance.

In this framework, our contribution is the following. We propose
a test that operates dimensionality reduction from a large spectral
library and for which the target subspace is learned to maximize
the worst detection case under H1. The test is thus optimized with
respect to (w.r.t.) a minimax criterion, which consists in maximizing
the worst probability of detection. This technique may be seen as a
particular (i.e. robust, or minimax) case of subspace target Matched
filters [14, 15] or Matched subspace detectors [2].

Minimaxity in detection has received a lot of attention in the lit-
terature (e.g. chap. 8 and 9 from [16], [17]), but we are not aware of
works addressing the specific problem introduced above. Note that
we restrict the scope of this paper to techniques that exploit spectral
information only. In the cases where the target spreads over several
pixels, spatio-spectral techniques can further improve detection (see
e.g. [18]).

The paper continues by defining in Sec.2 our model and the
corresponding (constrained) Generalized Likelihood Ratio Test
(GLRT). We also highlight in this Section the effects of dimension
reduction on the detection power. Sec.3 formalizes and introduces
the considered minimax detection criterion. The proposed opti-
mization problem is then solved in the 1-dimensional case in Sec.4,
where convexity issues are investigated. We also detail in this Sec-
tion, the connections of the proposed approach with the well known
Support Vector Machine (SVM). Sec.5 presents numerical results
for astrophysics hyperspectral data.
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2. SPARSE MODEL

The model discussed in the Introduction can in its simplest form be
written as the following composite hypotheses :{

H0 : x = n, n ∼ N (0, IN )
H1 : x = Sα+ n, ||α||0 = 1

(1)

where x and n ∈ RN . This model assumes no (or perfectly sub-
tracted) background, and a covariance matrix that is known and
equal under both hypotheses. In the case of a correlated noise model
with known covariance matrix R, i.e. H1 : x = Sα + n, n ∼
N (0,R), considering the weighted data R−1/2x leads to a model
of the form (1) [9].

We denote by S ∈ RN×L = [s1, s2, . . . , sL] the (known) set of
the possible signal features, with L possibly much larger than N . S
has normalized columns (‖si‖22 = 1, ∀i = 1, . . . , L). Under H1,
only one feature is activated, and this is expressed by imposing that
the unknown vector α ∈ RL has unit `0 pseudonorm.

The GLRT for model (1) with the constraint ||α||0 = 1 is:

max
α:||α||0=1

Pr(x|Sα)

Pr(x|0)

H1

≷
H0

γ′. (2)

This maximization should be performed over the index i, i =
1, . . . , L, of the nonzero component, and over the corresponding
value αi. It is easy to see that maximizing on a given nonzero
component αi yields α∗i = sTi x/ ‖si‖22 = sTi x which, injected
into Likelihood Ratio (2), leads to

Max Test : Tmax(x,S)
H1

≷
H0

γ,with Tmax(x,S) = max
i
|sTi x|.

(3)
In (3), superscript T denotes the transposition. This test is called
Max Test in [3].

In the “one among many” detection problem set by (1), we ex-
pect that the probability of false alarm (PFA) increases more than the
probability of detection (PDet) as the size L of the alternatives in-
creases (assuming that the true alternative is represented in S). Thus
we expect that the power of the test degrades with increasing L. As-
sessing this problem analytically is difficult because it involves the
distribution of the maximum of correlated variables. We illustrate
this effect below numerically on a library of spectral lines (100 of
which are displayed in Fig 3 (a)).

Starting from a library containing only the active spectrum under
H1 (say, s1), we build, by adding other spectral lines to S, two larger
libraries of respectively 100 and 97460 lines (S100 and S97460), and
we compare the ROC curves obtained by performing test (3) with
S = s1,S100 and S97460. We show the results of this experiment
for two instances of atoms s1 for PFA ≤ 0.1. In the first case (Fig.1
(a)), the atoms added to s1 in S100 and S97460 have forms that are
similar to s1 (i.e., the sj , j = 2, . . . , L are highly correlated to s1).
In the second case (Fig.1 (b)), the considered atom s1 presents lower
correlation with the other atoms of the library.

In both cases (a) and (b), we see that the best detection perfor-
mance is obtained as expected for the case S = s1 (violet crosses),
and that the detection power drops as the dimension of S increases
(S100: blue dashes, S97460: red diamonds). This detection loss is
much more important in case (b), where s1 is dissimilar to the other
columns of S.

Fig.1 also investigates the performance of a simple reduced di-
mension test of the form |xTd|≷H1

H0
γ (see Sec.3), where d corre-

sponds to the eigenvector associated to the largest singular value of

S, for S = S100 and S = S97460. In case (a), we see that this
detection test of reduced dimension has larger power compared to
the GLRT test (3) corresponding to model (1) with S = S100 and
S = S97460 (compare the blue dashes to the blue circles, and the red
diamonds to the red line). In case (b), the situation changes drasti-
cally, with a large power loss when the dimension is reduced.

Note finally that we have also considered the RX [19] test (which
amounts here to ‖x‖22 ≷H1

H0
γ, that is, an energy detector) because

this test is a benchmark for AD methods [12, 13]. The loss in power
of RX w.r.t. the other tests illustrates the penality incurred by not
using a priori knowledge onH1.

This experiment shows that dimension reduction may result in a
large power loss, or in other words, that some alternatives may be-
come undetectable with low dimension tests. This poses the problem
of designing a test of reduced dimension which is robust in the sense
that large losses for such alternatives are minimized.
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Fig. 1. Compared ROC curves shown for PFA ≤ 0.1 for two in-
stances of libraries S = S100 and S = S97460, in two different
cases: (a) s1 underH1 is well correlated to the other atoms of S and
(b): s1 is not well correlated to the other atoms.

3. MINIMAXITY AND DIMENSION REDUCTION

Instead of model (1), we consider now the following model:{
H0 : x = n, n ∼ N (0, I)
H1 : x = Dβ + n,

(4)

where D ∈ RN×r, r < N , and β ∈ Rr is not sparse, as the dimen-
sionality reduction is conducted by D. The GLR test for (4) is :

TGLR : max
β

Pr(x|Dβ)

Pr(x|0)

H1

≷
H0

ξ′ (5)

where underH1

Pr (x |Dβ) =
1

(2π)N/2
exp

(
−1

2
‖x−Dβ‖22

)
. (6)

Maximizing (6) on β yields the optimal β∗, which, by using ΠD,
the orthogonal projection of x on Im(D), reads:

β∗ = D(DT D)−1 DTx = ΠDx. (7)

Substituting β∗ in the GLR test (5) and taking the logarithm yields
the test

TGLR(x,D)
H1

≷
H0

ξ, (8)
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with ξ = 2 ln ξ′ and

TGLR(x,D) = xTD(DTD)−1DTx = xT ΠD x = ‖ΠDx‖22 .
(9)

For this test, we seek to optimize D in a minimax approach.
We first investigate the behavior of PFA and PDet w.r.t. D. As-
sume that under H1, the target signal is S = s`α`, then by (1)
x ∼ N (s`α`, I). Since the projection matrix ΠD is idempotent
(ΠDΠD = ΠD), symmetric (ΠT

D = ΠD) and of rank r, the distri-
butions of the test statistics xT ΠD x in (8) - (9) under H0 and H1

are known (p.291 of [20]). These distributions can be written as Chi-
squared distributions χ2

r with r degrees of freedom: TGLR(x|H0) =
nTΠDn ∼ χ2

r and TGLR(x|H1) = (s`α`+n)TΠD(s`α`+n) ∼
χ2
r,λ2 , where λ2 = ‖ΠD s`α`‖22 is the non centrality parameter (λ2

obviously depends on the signal s` underH1 and on D). Thus if we
denote by Φχ2

r
and Φχ2

r,λ2
the corresponding cumulative distribu-

tion functions, and by Q the generalized Marcum Q-function [21],

PFA = Pr (TGLR > ξ |H0) = 1− Φχ2
r
(ξ),

PDet=Pr(TGLR>ξ|H1)= 1−Φχ2
r,λ2

(ξ)=Q r
2
(λ,
√
ξ).

(10)
The PFA is independent of D (∀D: rank(D) = r). SinceQ r

2
(λ,
√
ξ)

is an increasing function of λ (Th.1 of [22]), maximizing PDet is
equivalent to maximizing λ. To address the problem posed at the
end of Sec.2, we formulate our optimization criterion as determining
the low dimension dictionary that maximizes the minimal PDet, that
is, that maximizes the PDet(si,D) occurring for the worst case of
{si, i = 1, . . . , L}:

max
D:‖di‖22=1

min
i
PDet(si,D)⇔ max

D:‖di‖22=1
min
i
‖ΠD si‖22 (11)

where D = [d1, . . . ,dr] ∈ RN×r is the reduced dimension dictio-
nary with r (r<N<L) unit-norm columns di.

4. RESOLUTION FOR A SINGLE ATOM

In the scope of this paper, we focus on the simplest case r = 1, for
which D has only one atom: D = d. In this case, ΠD = ddT and
λ2(si) = α2

i (d
T si)

2. Therefore, we seek the solution(s) of:

max
d:‖d‖2=1

min
i

(dT si)
2 (12)

which is non convex because of the non convex constraint ‖d‖2 = 1.

4.1. Solution of the Optimization Problem

First, note that problem (12) is invariant by rotation: if d∗ is a solu-
tion, for any rotation matrix Q, Qd∗ is also solution of (12) where
all the si are replaced by Qsi. We can verify this easily by replacing
in (12) d and si by Qd∗ and Qsi respectively, where QT = Q−1.

We will assume in the sequel that {si, i = 1, 2, . . . , L} are
in the interior of a cone defined as an arbitrary rotation of the pos-
itive orthant RN+ . By the rotation argument above, we can indeed
assume without loss of generality that all the si are in the interior of
RN+ . Proposition 1 proves that (12) can be solved using a standard
quadratic programming (QP) solver such as CVX [23].

Proposition 1. The solutions of (12) are {d∗,−d∗}, where d∗ ∈
RN+ is the solution of the QP:

minimize −t
subject to t− dT si ≤ 0, i = {1, . . . , L}

‖d‖22 ≤ 1
(13)

We only give the idea of the proof here for lack of space. The
proposition relies on two Lemmas. The first Lemma shows that if
d∗ is solution of (12), −d∗ is also solution, and d∗ or −d∗ ∈ RN+ .
To show that d∗ is the solution of the QP (13), we consider now the
problem (12) on RN+ written in its epigraph form [24]. The second
Lemma shows that the solution of this non convex problem can be
obtained by the QP above.

4.2. Connection of Problem (13) with One-Class Classifiers

The proposed optimization problem can be represented geometri-
cally on a unit-norm spherical boundary denoted by Σ1, where all
si⊂Σ1. This problem can be interpreted as finding the vector d on
the unit-sphere that minimizes the largest angle θi or equivalently,
finding the circle C of minimum radius R that contains all the points
si (Fig.2). Furthermore, the proposed optimization criterion can
also be solved through One-Class Classifiers of SVM type. SVM
is an approach used to solve classification and regression problems,
mainly for machine learning applications introduced by Vapnik et
al. in 1992 [25]. Originally, it was a binary classifier, and later was
developed to multi-class.

Schölkopf [26] proposed a one-class SVM (ν-SVC) that seeks
an optimal hyperplane separating maximally the origin and the train-
ing samples (the class) in feature space. Suppose Pd is a plane per-
pendicular to d and ρ is the distance of Pd to the origin. We search
the farthest plane which discards all si aside, as depicted in Fig.2.
The function y := dT si − ρ = 0 denotes the decision function of the
classification problem associated to Pd.

Another approach that describes our optimization criterion is the
Support Vector Data Description (SVDD). This method finds the
minimum volume of a closed boundary sphere Σ, of center a and
radius R [27]. R is minimized such that Σ contains all points si
similarly to the smallest circle approach described above (see Fig.2).
If the si are normalized ‖si‖22 = 1, SVDD is equivalent to ν-SVC.

ρ

Pd

Σ

Pd

Σ

∩si Σ1

Fig. 2. Geometrical view of One-Class Classifiers for the consid-
ered minimax detection problem (12)-(13), with Σ1 denotes a unit-
sphere: the problem is equivalent to minimizing the largest angle θi
between d and si, to finding the circle C of minimum radius R that
contains all the points si, to maximizing the distance ρ of Pd to the
origin, or to minimizing the radius R of the sphere Σ that contains
all the data points si (Σ admits C as a great circle).
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5. APPLICATION TO ASTROPHYSICAL SPECTRA

We present here numerical results obtained for the detection of spec-
tral lines in HSI data that will be acquired by the integral field spec-
trograph named MUSE (Multi Unit Spectroscopic Explorer). This
instrument will deliver data cubes made of 300× 300 pixels at 3600
wavelengths. Highly realistic data were simulated and provided by
the MUSE consortium.

An important challenge in such data is to detect faint line spec-
tra emitted by distant galaxies (Lyman Alpha emitters). Such sources
are expected to be relatively rare (at most one line in each spectrum),
and have very specific signatures that can be simulated using astro-
physical models (hence a large library), leading to the “one among
many” data model (1). In our case, astrophysical simulations lead to
a spectral library S ∈ R3600×9746. Because the lines can essentially
be centered at any of the 3600 wavelength channels, the effective
size of S is 3600 × (9746 × 3600) = 1.2 × 1011, and this should
be tested over each of the 90000 spectra of the data cube. Using
the full library leads to a test of prohibitive complexity. The mini-
max approach is interesting here to detect better the most marginal
(potentially most interesting) spectral forms.

For the purpose of computing ROC curves over the whole li-
brary, we make two simplifications. First, we consider atoms of
smaller dimension (N = 100, see Fig.3 (a)). Then, we train the
considered test dictionaries for the set of the 9746 atoms, centered
at wavelength channel 50 (Fig.3 (b)), and we do not consider possi-
ble translations under H1. These simplifications have no impact on
the presented results but allow an exhaustive statistical analysis. Full
size detection tests are described in [18].

In Fig.4 and Table 1, we compare the AUC obtained for sev-
eral alternatives (100 of them are shown in Fig.4, while the Table
addresses the 9746 alternatives) and for 5 dictionaries. The first dic-
tionary is D = si, where si is the atom under H1. This is indeed
the reference. The second dictionary is S = S9746, that is, the full
library. The third one is the 1-dimension dictionary obtained by the
proposed minimax approach (D = d∗, Sec.4). The last two em-
ploy the K-SVD algorithm [28], a dictionary learning technique that
has been proven useful for sparse signal modeling. We consider here
the K-SVD dictionaries for r = 1 (leading to D = d(k)svd

1 , in which
case this is equivalent to the SVD approach discussed in Sec.2), and
r = 7 (D = Dksvd

7 ). Fig.3 (b) shows the d(k)svd
1 and d∗.

In Fig.4, we can see that d(k)svd
1 ’s (black crosses) performances

are nearly as good as the reference (green dots) for most atoms.
However, for some alternatives (for instance i = 18 and i = 91) the
performances of d(k)svd

1 and Dksvd
7 (cyan line) drop drastically. This

is due to the high model error of some si which are not well corre-
lated with the atoms of the K-SVD dictionaries. The corresponding
spectral lines present a large probability to remain undetected. In
contrast, the proposed minimax approach d∗ (blue dash-dots) main-
tains a more stable detection power in such cases.

The full library S9746 (red stars) represents inferior overall per-
formances to the K-SVD dictionaries even though it contains the
active alternative. The reason is that that the atoms of the K-SVD
dictionaries represent well most alternatives (cf situation depicted
in Fig.1(a)), but not all of them (as i = 18 and i = 91, situation
Fig.1(b)).

Turning now to the results over the whole set of 9746 alterna-
tives, Table 1 shows that the highest minimum AUC is obtained by
the full library S9746 (but in practice, this test is not implementable
on full size data), followed by the proposed dictionary d∗. The
d(k)svd
1 dictionary has the lowest minimum AUC because some atoms

are discarded by this test. In fact we computed that there are no alter-

native for which the loss in AUC w.r.t. the reference (row 1 in Table
1) is superior to 14% for the minimax approach, while this happens
for 15 alternatives for K-SVD1 and the loss goes up to 26% in some
cases. Of course, the minimax approach has a lower average detec-
tion power than K-SVD because a trade-off has to be made between
average versus minimax performance.

Dictionary Ranking Criterion
used in (3) Min AUC (minimax) Average AUC

Atom underH1 Ref : 0.84 Ref : 0.85

S9746 1st : 0.73 3rd : 0.80

d∗ 2nd : 0.71 4th : 0.78

d(k)svd
1 4th : 0.59 1st : 0.84

Dksvd
7 3rd : 0.66 2nd : 0.83

Table 1. Results over the whole set of alternatives

Spectral channels

F
lu

x
 (

ar
b
it

ra
ry

 u
n
it

s)

0 10 20 30 40 50 60 70 80 90 100

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
0.9

-0.1

(a) 100 spectral lines

Minimax atom
(K)-SVD atom

Spectral channels

F
lu

x
 (

ar
b
it

ra
ry

 u
n
it

s)

(b) Atoms: d∗ and d(k)svd
1

Fig. 3. The spectral lines and the trained dictionaries.
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6. CONCLUSION

We have shown that the proposed minimax approach fulfills the de-
sired objective of maximizing the worst detection performance. In
the 1-dimensional case, the corresponding criterion is non convex,
but we showed that optimal atom d∗ is obtained as the solution of the
QP problem (13), where d∗ belongs to the positive orthant. More-
over, we found connections between this approach and the SVM
One-Class Classifiers and we provided the corresponding geomet-
rical illustration. Further investigations are carried out to optimize
the minimax approach over r-dimensional dictionaries with r>1.
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