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ABSTRACT

The finite mixture model based on the Student’s-t distribu-
tion, which is heavily tailed and more robust than the Gaus-
sian mixture model (GMM), is a flexible and powerful tool
to address many pattern recognition problems. However, the
Student’s-t distribution is unbounded. In many applications,
the observed data are digitalized and have bounded support. A
new finite multivariate Student’s-t mixture model for bounded
support data, which includes the GMM and the Student’s-t
mixture model (SMM) as special cases, is presented in this
paper. We propose an extension of the Student’s-t distribu-
tion in this paper. This new distribution is sufficiently flexible
to fit different shapes of observed data, such as non-Gaussian,
non-symmetric, and bounded support data. Another advan-
tage of the proposed model is that each of its components
can model the observed data with different bounded support
regions. In order to estimate the model parameters, previ-
ous models represent the Student’s-t distributions as an infi-
nite mixture of scaled Gaussians. We propose an alternate
approach in order to minimize the higher bound on the data
negative log-likelihood function, and directly deal with the
Student’s-t distribution.

Index Terms— Bayesian estimation, bounded support re-
gions, Density estimation.

1. INTRODUCTION

The finite mixture model is widely used in machine learning
areas. The main advantage of this technique is in its capability
to use prior knowledge to model the uncertainty in a proba-
bilistic manner. In this technique, the Gaussian mixture model
(GMM) [1-3] is a well-known method. The major advantage
of the GMM is that the log-likelihood function used to esti-
mate the parameters is inherently simple. Another advantage
of the GMM is that it is easy to implement and requires a
small number of parameters. These parameters can be effi-
ciently estimated by adopting the expectation maximization
(EM) algorithm [4-6]. However, the GMM is sensitive to
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outliers and may lead to excessive sensitivity to small num-
bers of data points [7, 8]. Also, for many applied problems,
the tail of the Gaussian distribution is shorter than required.

Another way to fit different shapes of observed data is to
use the generalized Gaussian mixture model (GGMM) [9,10].
In this model, each component is represented by a multi-
dimensional generalized Gaussian distribution T(x; |z, X5, A;).
This distribution has one parameter more than the Gaussian
distribution ®(x;|;, X;). The parameter A; controls the tails
of the distribution and determines whether the latter is peaked
or flat. However, the major disadvantage of GGMM is that
this model assumes that the dimensions of the observed data
are independent. Therefore, it is not suitable for analyzing
correlated data.

Use of the finite Student’s-t mixture model (SMM) has
been proposed in order to improve the robustness of the algo-
rithm [7,11]. In this model, each of the mixture’s components
is a Student’s-t distribution S(x;|x;,%;,v;). The main ad-
vantage of the Student’s-t distribution is that it is more heav-
ily tailed than the Gaussian distribution. Unlike the GMM,
each component of the SMM has an additional paramete—the
degrees of freedom (v;)-which is which is a robustness tun-
ing parameter. Hence, the SMM of the longer tailed multi-
variate Student’s-t distribution provides a much more robust
approach than the GMM. In order to estimate the model pa-
rameters by adopting the EM algorithm, the Student’s-t dis-
tribution in the previous model is represented as an infinite
mixture of scaled Gaussians [11], which corresponds to an
increase in the algorithm’s complexity.

One drawback of the above-mentioned mixture models is
that their distributions are unbounded with a support range
of (—oo0,+00). We observe in many real applications that
the observed data always fall within the bounded support
regions, and that the dimensions of the observed data are
correlated. For example, in the area of signal processing,
the power spectrum is semi-bounded. In the area of image
computer vision, the pixels are usually in the limited range.
Motivated by the aforementioned observations, we introduce
in this paper a multivariate Student’s-t mixture model for
bounded support data, based on modeling of the probability
density function. Differing from the above-mentioned mix-
ture models, each component density in our model can model
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the observed data with different bounded support regions.
We propose an extension of the Student’s-t distribution that
has a flexibility to fit different shapes of observed data, such
as non-Gaussian, non-symmetric, and bounded support data.
The proposed model can be used to analyze both univariate
and multivariate data. We directly deal with the Student’s-t
distribution by proposing an alternate approach to estimate
the model parameters, whereas the Student’s-t distributions in
previous models are represented as infinite mixtures of scaled
Gaussians. We demonstrate through extensive simulations
that the proposed model is superior to other methods based
on the modeling of the probability density function of the data
via finite mixture model. The remainder of this paper is orga-
nized as follows: section 2 describes the proposed method in
detail; section 3 presents the parameter estimation; section 4
sets out the experimental results; and section 5 presents our
conclusions.

2. PROPOSED METHOD

Given a finite mixture model with K components, the
marginal distribution of the random variable x; is

f(x:1©) = ijp x;]€2;5) €))

where © represents the model parameters. The prior proba-
bility 7; that pixel x; is in label €); satisfies the constraints

K
7rj20and Zﬂ'j:]. (2)
j=1

As shown in (1), the mixture models have relied on p(x;|2;)
to model the underlying distributions. Note that, p(x;|Q2;)
can be any kind of distribution. In GMM [1], GGMM
[9, 10], and SMM [7, 111, p(x;|©2;)) is the Gaussian dis-
tribution ®(x;|p;,X;), generalized Gaussian distribution
T(x;|pj, 25, Aj), and the Student’s-t distribution S (x; |15, X5,
v;), respectively. These distributions are all unbounded with
support range (—o0, +00). In order to overcome this prob-
lem, we propose a new finite mixture model with bounded
support region, non-Gaussian, non-symmetric distribution.
First, for each label €2;, we define Jg; to be the bounded
support region in R, and the indicator function as

H(x;|Q;) = { 0 Otherwise ©

And the multivariate Student’s-t distribution S(x;|u;, X, v;)
as follows:

1
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In 4), +=(1,2,...,N), j=(1,2,...,K). The D-dimensional vec-
tor y; is the mean. The DxD matrix ¥; is the covariance,
|X;| denotes the determinant of ¥, and v; is the degree of
freedom. With the indicator function H(x;|(2;) in (3) and the
distribution S(x;|p;, X5, v;) in (4), we define a bounded mul-
tivariate Student’s-t distribution :

(Xz\ug,Ej,vj) (xi[€2;)
W(x; '72'7 i) —
(X |IU’J J v]) fa X|LLJ,EJ,UJ)d
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S(x|p5,%;,v;)dx is the normalization constant,

In(5), [,
and is identified as the share of S (xi|p4, X5, v;) that belongs
to the support region dg ;. The idea to define the distribution
W (x;]p5, X5, v5) in (5) is based on the fact that the observed
data are digitalized and have bounded support. We assign
W (x;|pj, X5, v;5) as equal to S(x;|u;,3;,v;) in the support
region 893., and as zero outside. It is worth mentioning that
the proposed distribution in (5) will always satisfy the condi-
tions of the probability density [2]:

o0

W(xilpj, %5, v5) = 0 and /‘I’(X\M,Ej,vj)dle (6)

— 00

Given the distribution W (x; |5, 2, v;) in (5), the log-likelihood
function is written in the form

S(xilpg, 2y, v)Hxi[€2)
log (7
Z Z " fa“ (x]p5, Bj, v5)dx

From (7), we can see that each component of the proposed
model has the ability to model the observed data with differ-
ent bounded support regions dg,. We can define any shape
of Jg; based on prior knowledge about the observed data.
Given the log-likelihood function in (7), our next objective is
to optimize the parameter set in order to maximize this log-
likelihood function.

3. PARAMETER LEARNING

In this section, rather than using the EM algorithm to estimate
the model parameters and to maximize the log-likelihood
function in (7), we propose an alternate approach to minimize
the negative log-likelihood function. Another difference be-
tween the proposed model and the above-mentioned models is
the approach used to estimate the parameters of the Student’s-
t distribution. In order to estimate the model parameters, we
deal directly with the Student’s-t distribution, whereas the
Student’s-t distribution in existing models is represented as
an infinite mixture of scaled Gaussians. In order to determine
the label €2; to which the observed data x; should be assigned,
we need to adjust the parameters © = {m;,n;, 1, %;,v;}
in order to maximize the likelihood function in (7). Since
the logarithm is a monotonically increasing function, it is
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more convenient to consider the negative logarithm of the
likelihood function in (7) as an error function

N K
- Z log Zﬂjq](xi|ﬂja Ejv5) (8)
i=1  j=1

Therefore, maximizing the likelihood L(©) is equivalent to
minimizing J(©). In order to minimize the error function

J(0©), we define variable z( )

J(©) = —

0 @\If(xm;f o)
“ij )]
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where ¢ indicates the iteration step. Because the values zfjt)

A

in (9) always satisfy the conditions Z j=1%; = 1, wecan
apply Jensen’s inequality [3], in the form log(Zf 1 Z(;)s) >

ZJK 1 fj) log(s) to the error function in (8). This gives

N K
¢
< =332 {log s +log Wxily, 55, v;)}
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(10)
Minimizing the negative log-likelihood function in (8), is
equivalent to minimizing the error function E(O)

N K
E©)=- ZZZS) {log m; + log S(xi| 15, %5, v;)
i=1 j=1

— log/ S(x|pj, 35, v5)dx}
agj

(11)

To minimize this function, we consider the derivation of the

error function E(©) with the means ;, ¥;' and v; at the

(t+1) iteration step. According to the theory of robust statis-

tics [12], any estimate T is defined by an implicit equation:
Z T(x =0 (12)

This gives a numerical solution of the location of T as a
weighted mean:

> WiX;
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Now we can apply (12) to the 0E(©)/0p; = 0, aE(@)/QZj_l

0, and 0F(©)/0v; = 0. After some manipulation [13], we
have the estimates of 15, X;, and v; at the (t+1) step

N
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The estimates of the degrees of freedom v; are given by the
solution of the equation

—p(vj/2) +log(v;/2) + ¥ (v;/2+ D/2) -

N
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In (14), (15), (16), the h(x|y;, X;,v5), Rj, G;, and F; are
given by

Uj+D
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where s, ~ S(x|p; 2 E( ), (t)) denotes the random vector
that is drawn from the probablhty distribution S, and M is
the number of random vectors s,,,;. Note that, M is a large
integer value. We use M = 106 for our experiments. The next
step is to update the estimate of the prior probability 7;. The

. K
constraint ) 3., 7; = 1 enables

Z 2D 1)

So far, the discussion has focused on estimating © =
{m;, 1j,Z;,v;} of the model. In the next section, we demon-
strate the robustness, accuracy and effectiveness of the pro-
posed model compared to other approaches.
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4. EXPERIMENTS

We begin with one experiment on simulated data in Fig. 1
to demonstrate the robustness of the proposed distribution.
As shown, the observed data is in the interval (-0.5, 0.5).
In this experiment, the number of components for all com-
pared methods is assigned a value of 2 (K=2). In Fig. 1(b),
the values of the statistic X2 [10] obtained by GMM [1, 2]
method is very poor , with X 2-84854.08. The GGMM [9,
10] and SMM [7, 11] methods slightly improve the result,
with X2=30874.85 and X'?=21043.41, respectively. How-
ever, the estimated histogram remains poor. Compared to
GMM, GGMM, and SMM, we find that our method is the
most robust and has the lowest X?=10186.47.

7 7

1 02 03 04 05

Fig. 1. The histogram
of the observed data, (b): The estimated histogram
of GMM (X?=84854.08),GGMM (X'2=30874.85), SMM
(X2=21043.41), and our method (X'2=10186.47).

The estimated histogram, (a):

In the second experiment , we shows a sample with 20,000
simulated points from four labels. Each label has 5,000
points. The ground truth distributions (two-dimensional
view) of four labels are shown in Fig. 2(b). As shown in
this figure, the intensity distribution of each label type is in
the bounded support region, does not exhibit an exact Gaus-
sian shape. Fig. 2(c)-(f), show the results of GMM, GGMM,
SMM, and our method, respectively. In this experiment, the
dimensions of the data are not independent. Therefore, the
accuracy of GGMM in Fig. 2(d) is quite poor. GMM (Fig.
2(c)) and SMM (Fig. 2(e)) slightly improve the result. How-
ever, the error of the estimated distributions compared to the
ground truth distributions in Fig. 3(b) remains quite high.
The proposed method, as shown in Fig. 2(f), is more accurate
compared to other methods.

Wavelet approximation coefficient is an important prob-
lem in computer vision as it plays a major role in a wide range
of applications. In the next experiment, in order to give some
implementation details about log-likelihood function, an im-
age from Brodatz (www.ux.uis.no/ tranden/brodatz.html), as
shown in Fig. 3(a), is used. In Fig. 3(b)-(e), we show the
wavelet coefficients of the high-pass subband (CH). In Fig.
3(f) we plot the log-likelihood function versus the number
of iteration. From that plot we see that our method reaches
higher maximum values, which implies better performance.
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Fig. 2. The simulated point set experiment, (a): Original data,
(b): Ground truth distribution, (¢): GMM, (d): GGMM, (e):
SMM, (f): our method.

(d) [}

Fig. 3. Fig. 4. Approximation of the wavelet coefficients
(K=2), (a): The original image from Brodatz datasets, (b):
GMM (X2=53.82), (c): GGMM (X?=14.50), (d): SMM
(X2=5.67), (¢): BGGMM (X2=4.88), (f): Comparison of the
log-likelihood function.

5. RELATION TO PRIOR WORK AND
CONCLUSIONS

We have presented a bounded asymmetrical Student’s-t mix-
ture model to analyze both univariate and multivariate data.
The proposed distribution, based on the Student’s-t distri-
bution, is heavily tailed and more robust than the Gaussian
Mixture Model, and has the flexibility to fit different shapes
of observed data such as non-Gaussian, non-symmetric, and
bounded support data. Each component of the proposed
model has the ability to model the observed data with dif-
ferent bounded support regions. In order to estimate model
parameters, existing models represent the Student’s-t distri-
bution as an infinite mixture of scaled Gaussians. However,
we propose an alternate approach in order to minimize the
higher bound on the data negative log-likelihood function,
and directly deal with the Student’s-t distribution. Through
extensive simulations, we demonstrate that the proposed
model is superior to other clustering methods, based on the
modeling of the probability density function of the data via
finite mixture model.
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