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ABSTRACT

This paper is devoted to the analysis of the angular resolution limit
(ARL), an important performance measure in the directions-of-
arrival estimation theory. The main fruit of our endeavor takes the
form of an explicit, analytical expression of this resolution limit,
w.r.t. the angular parameters of interest between two closely spaced
point sources in the far-field region. As by-products, closed-form
expressions of the Cramér-Rao bound have been derived. Finally,
with the aid of numerical tools, we confirm the validity of our
derivation and provide a detailed discussion on several enlightening
properties of the ARL revealed by our expression, with an emphasis
on the impact of the signal correlation.

Index Terms— Cramér-Rao bound, angular resolution limit,
Smith criterion, directions-of-arrival estimation

1. INTRODUCTION

As an important topic within the area of signal processing, far-field
source localization in sensor array has found wide-ranging applica-
tion in, among others, radar, radio astronomy and wireless communi-
cations [1–7]. One common measure to evaluate the performance of
this estimation problem is the resolvability of closely spaced signals,
in terms of their parameters of interest. In this paper we investigate
the minimum angular separation required under which two far-field
point sources can still be correctly resolved.

To approach this problem, it is necessary to revive the concept
of the resolution limit (RL), which will serve as the theoretical cor-
nerstone of this paper. The RL is commonly defined as the mini-
mum distance w.r.t. the parameter of interest (e.g., the directions-of-
arrival (DOA) or the electrical angles, etc.), that allows distinguish-
ing between two closely spaced sources [8–10]. Till now there exist
three approaches to describe the RL. The first rests on the analysis
of the mean null spectrum [11], the second on the detection theory
[9, 12, 13], and the third on the estimation theory, capitalizing on
the Cramér-Rao bound (CRB) [8, 14, 15]. A widely accepted crite-
rion based on the third approach, proposed by Smith [8], states that
two source signals are resolvable if the distance between the sources
(w.r.t. the parameter of interest) is greater than the standard devia-
tion of the distance estimation. In this paper we consider the RL in
the Smith’s sense, due to the following advantages over competing
approaches: The Smith criterion i) takes the coupling between the
parameters into account and thus is preferable to other criteria of the
same category, e.g., the one proposed in [14, 16]; ii) enjoys general-
ity unlike, e.g., the mean null spectrum approach which is designed
for a specific high-resolution algorithm; iii) is closely related to the
detection theory approach, as recently revealed in [10].
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This paper investigates the analysis of the RL for two closely
spaced correlated deterministic sources. The RL has recently re-
ceived an increasing interest especially after the publication [8].
Some prior works on the RL, on the one hand, either consider cer-
tain specific criteria as the RL based on hypothesis tests [9, 17–19],
or are tailored to specific estimation procedures as, e.g., the MU-
SIC algorithm in [20]. Prior works based on the Smith criterion,
on the other hand, either contain non-closed-form expressions that
require numerical evaluation, as in [13, 21], or rest on specific ideal
assumptions (e.g., one known DOA [8, 22], uncorrelated sources
[20], ULA case [8, 15, 23], non-time-varying sources [15], etc.)
In our work, we propose to derive an analytical expression for the
angular resolution limit (ARL)1, denoted by δ, between two closely
spaced, time-varying (both in amplitude and phase) far-field point
sources impinging on non-uniform linear array, which, to the best
of our knowledge, is till now absent in the current literature. As
by-products, closed-form expressions of CRB w.r.t. the relevant
parameters are provided to facilitate the derivation of the ARL. Fur-
thermore, our expression, by virtue of its concise form, highlights
the respective effects of various system parameters on the ARL δ.
The analysis of the expression for different cases of correlated and
uncorrelated sources, reveals a number of enlightening properties
pertinent to the ARL’s behavior. Finally, our expression is also com-
putationally efficient, by avoiding the difficulties associated with the
numerical solution of non-linear equations.

The following notation will be used throughout this paper: (·)H
and (·)T denote the conjugate transpose and the transpose of a ma-
trix, respectively. <{·} and ={·} denote the real and imaginary part,
respectively. tr{·} denotes the trace of a matrix, whereas ‖·‖ denotes
the norm of a vector.

2. MODEL SETUP

Consider a linear, possibly non-uniform, array comprising M sen-
sors that receives two narrowband time-varying far-field sources
s1(t) and s2(t), the directions-of-arrival of which are θ1 and θ2,
respectively. Then the received signal at the m-th sensor can be
expressed as [1]:

xm(t) =

2∑
i=1

si(t)e
jkdm sin(θi) + nm(t), t = 1, . . . , N

and m = 1, . . . ,M,

(1)

where the sources are modeled by2 si(t) = ai(t)e
j(2πf0+πi(t)), i =

1, 2, in which ai(t) denotes the time-varying non-zero real am-
plitude, f0 denotes the carrier frequency, and πi(t) denotes the

1The so-called ARL characterizes the RL when we consider the angular
parameters as the unknown parameters of interest.

2Note that this is a commonly used signal model in communication sys-
tems (cf. [24, 25]).
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time-varying phase; dm denotes the spacing between the first sensor
(which is chosen as the so-called reference sensor, i.e., d1 = 0) and
the m-th sensor, k = 2π

λ
is the wave number (with λ denoting the

wave length), nm(t) denotes the additive noise at the m-th sensor,
and N is the number of snapshots.

For mathematical convenience, we define νi = k sin(θi), i =
1, 2 as our parameters of interest. Changing (1) into the vector form,
one obtains:

x(t) = As(t) + n(t), (2)

where x(t) = [x1(t), . . . , xM (t)]T , s(t) = [s1(t), s2(t)]T , n(t) =

[n1(t), . . . , nM (t)]T , andA = [a(ν1),a(ν2)]. The steering vectors
are defined as a(νi) = [ejνid1 , . . . , ejνidM ]T , i = 1, 2. Further-
more, define the correlation factor ρ between the two signals as [26]

ρ =
sH1 s2

‖s1‖ ‖s2‖
(3)

where si = [si(1), . . . , si(N)]T , i = 1, 2 are signal vectors.
The following assumptions are made in the remaining of this

paper:

A1 The sensor noise follows a complex circular white Gaussian dis-
tribution, both spatially and temporally, with zero-mean and
unknown noise variance σ2.

A2 The source signals are assumed to be deterministic, and the sep-
aration of the sources is small.

A3 The unknown parameter vector is ξ =
[
ν1, ν2, σ

2
]T . Thus, for

given ξ, the joint probability density function of the obser-
vation χ = [xT (1), . . . ,xT (N)]T can be written as p(χ |
ξ) = 1

πMN |R| exp
(
−(χ− µ)HR−1(χ− µ)

)
, whereR =

σ2IMN and µ =
[
(As(1))T , . . . , (As(N))T

]T
.

3. DERIVATION OF δ

The derivation of the ARL δ can be divided into three steps. The
first step involves the derivation of the CRBs w.r.t. the relevant pa-
rameters. The second builds on this result and simplifies the implicit
function based on the Smith criterion, the root of which yields δ. The
last step is to solve the function corresponding to different values of
ρ, leading to the final expression for the ARL.

3.1. CRB Derivation

The CRB of the unknown parameters (ν1 and ν2) is obtained as the
analytical inverse of the Fisher information matrix (FIM) for ξ (de-
noted by I). Under Gaussian noise, the elements of I can be calcu-
lated using the following expression [27]:

[I]i,j = tr

{
R−1 ∂R

∂ [ξ]i
R−1 ∂R

∂ [ξ]j

}
+ 2<

{
∂µH

∂ [ξ]i
R−1 ∂µ

∂ [ξ]j

}
.

(4)
where [ξ]i denotes the i-th element of the parameter vector ξ. Thus
for our model, I takes the following block-diagonal form:

I =

[
Ī 0
0T MN

σ4

]
, (5)

where

Ī =

[
2NαSNR1

2
σ2<{η}

2
σ2<{η} 2NαSNR2

]
, (6)

in which α =
∑M
m=1 d

2
m, SNRi = ε2

i /σ
2, i = 1, 2, where εi =√∑N

t=1 a
2
i (t)/N, i = 1, 2; and

η = sH1 s2

M∑
m=1

d2
me
−jdm(ν1−ν2) = sH1 s2

M∑
m=1

d2
me
−jdm∆, (7)

where ∆ = ν1 − ν2 denotes the spacing between ν1 and ν2. We
assume in the following that ν1 > ν2, hence ∆ > 0.

By inverting the 2× 2 matrix Ī we obtain the following expres-
sions for the entries of the CRB matrix:

CRB(ν1) ,
[
Ī−1

]
1,1

=
2Nα

Ψ
SNR2, (8)

CRB(ν2) ,
[
Ī−1

]
2,2

=
2Nα

Ψ
SNR1, (9)

and
CRB(ν1, ν2) ,

[
Ī−1

]
1,2

= − 2

σ2Ψ
<{η}, (10)

where Ψ = 4α2N2SNR1 ·SNR2−(4/σ4)·<2{η} is the determinant
of I .

3.2. Equating the ARL

According to the Smith criterion, the ARL, δ, is given as the angular
spacing, ∆, which is equal to the standard deviation of the estimate
of ∆. The latter, under mild conditions [28], can be approximated
as
√

CRB(∆), suggesting that δ can be obtained as the (positive)
solution of the equation:

δ2 = CRB(δ). (11)

where CRB(δ) = CRB(ν1) + CRB(ν2)− 2CRB(ν1, ν2) [10].
Substituting (8)-(10) into (11), the latter is transformed into:

δ2 = CRB(ν1) + CRB(ν2)− 2CRB(ν1, ν2)

=
2

Ψ
(N · SNR2α+N · SNR1α+

2

σ2
<{η}).

(12)

Substituting δ for ∆ in identity (7), we observe that (12) is a highly
non-linear equation in δ. Hence, in order to find the solution of (12)
w.r.t. δ, and taking into account that δ is small, we resort to the
first-order Taylor expansion of η around δ = 03 to obtain:

η ≈ sH1 s2

M∑
m=1

d2
m(1− jdmδ)

= sH1 s2

(
M∑
m=1

d2
m − jδ

M∑
m=1

d3
m

)
= sH1 s2(α− jδβ),

(13)

where β =
∑M
m=1 d

3
m. Combining (13) with (3), it follows that:

<{η} ≈ ‖s1‖ ‖s2‖<{ρ(α− jδβ)}
= Nε1ε2(ρ̄α+ ρ̃βδ),

(14)

3In asymptotic cases δ becomes small and our approximation made here is
tight, as will be proved by our simulation (cf. Fig. 1). This can be explained
by the fact that the Maximum Likelihood estimator, and generally all high
resolution estimators, have asymptotically an infinite resolution capability
leading to δ → 0 [5, 29].
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where ρ̄ and ρ̃ are defined as the real and imaginary part of ρ, re-
spectively, i.e., ρ̄ = <{ρ} and ρ̃ = I{ρ}.

Now we merge (14) into (12) and, after some mathematical ma-
nipulations, obtain the following quartic function of δ:

D2δ4 + 2CDδ3 + (C2−AB)δ2 +Dδ+
A+B

2
+C = 0, (15)

where A, B, C and D are defined as:

A = N · SNR1α, (16)

B = N · SNR2α, (17)
C = N

√
SNR1 · SNR2ρ̄α, (18)

and
D = N

√
SNR1 · SNR2ρ̃β. (19)

Thus our task of finding the expression of δ has been brought down
to finding the root of (15).

3.3. Expression of δ for different correlation factors

The solution of (15), depending on different values of ρ, falls into
the following three cases:
Case 1. Non-zero imaginary part of the correlation coefficient ρ

(ρ̃ 6= 0): in this case (15) remains a quartic function in δ.
We know from the parameter transformation property of the
CRB (cf. [30], p.37) that CRB(δ) = CRB(−δ), Thus, if δ
is a root of (11) (hence of (15)), then −δ will also be a root
thereof, which allows us to remove all the terms of odd de-
grees in (15), leading to a quadratic equation of δ2. Hence

D2δ4 + (C2 −AB)δ2 +
A+B

2
+ C = 0. (20)

The root of (20) is4:

δ2 =
AB − C2 −

√
(C2 −AB)2 − 4D2(A+B

2
+ C)

2D2

=
γ

κ

(
1−

√
1− ακφ

γ2

)
,

(21)
where γ = (1− ρ̄2)α2, κ = 2ρ̃2β2 and

φ =
1

N

(
1

SNR1
+

1

SNR2
+

2ρ̄√
SNR1 · SNR2

)
. (22)

The existence of δ2 in (21) is assured since under realistic
conditions (ακφ/γ2)� 1. Thus the ARL is given by:

δ =

√√√√γ

κ

(
1−

√
1− ακφ

γ2

)
. (23)

Case 2. Not fully correlated signals with zero imaginary part of the
correlation coefficient ρ (ρ̃ = 0 and ρ̄ 6= ±1): in this case
D = 0, (C2 − AB) 6= 0, and (15) degenerates to (C2 −
AB)δ2 + A+B

2
+ C = 0. Taking its positive root we have:

δ =

√
A+B

2
+ C

AB − C2
=

√
φα

2γ
. (24)

4The other root of (20), which is very large, is in contradiction with the
observation made in Footnote 3, thus is regarded as a trivial solution and
rejected.

The existence of δ is guaranteed from the fact that in this case
both φ and γ are greater than zero. It is worth noticing that an
important special case of Case 2, in which both ρ̃ and ρ̄ equal
zero, namely, the two signals are uncorrelated, reduces (24)
to

δ =

√
1

2Nα

(
1

SNR1
+

1

SNR2

)
. (25)

Case 3. Fully correlated signals with zero imaginary part of the
correlation coefficient ρ (ρ̃ = 0 and ρ̄ = ±1): in this case
(15) degenerates to A+B

2
+ C = 0 and a solution can not be

found.5

Now, combining the results of all three cases presented above
yields our final expression for the ARL, which can be written as:

δ =



√√√√γ

κ

(
1−

√
1− ακφ

γ2

)
, for ρ̃ 6= 0√

φα

2γ
, for ρ̃ = 0 and ρ̄ 6= ±1

(no closed-form expression available), for ρ̃ = 0 and ρ̄ = ±1

(26)

Note that, for the uniform linear array (ULA) configuration the pa-
rameters in (26) can be derived as α = M(M−1)(2M−1)

6
d and β =

M2(M−1)2

4
d, where d denotes the inter-sensor spacing.

4. SIMULATIONS AND NUMERICAL ANALYSIS

The context of our simulations is a ULA ofM = 6 sensors with half-
wave length inter-element spacing. The snapshot number is given by
N = 100. Our results are as follows:

• In Fig. 1 we validate our approximate analytical expression of
δ in (26) for two cases (ρ̃ 6= 0; ρ̃ = 0 & ρ̄ 6= ±1) by compar-
ing it with the true δ (obtained by solving (11) numerically)
and show that both results are identical.

• As is revealed by (26), the concrete waveforms of the sig-
nals have no effect on δ, which only depends on the two sig-
nals’ respective strengths (ε1, ε2) and the correlation ρ be-
tween them. Furthermore, note that either ρ̄ or ρ̃ plays its
role separately. Fig. 2 shows that, with a fixed ρ̄, the ARL
δ slightly increases with the value of |ρ̃|. However, this im-
pact is so limited compared to that of the parameter ρ̄, that
the former is practically negligible (cf. Fig. 3 and Fig. 4, both
of which show that δ increases notably as ρ̄ raises, while re-
mains nearly unaltered with the change of ρ̃). This fact can be
explained by considering, for (ακφ/γ2) � 1, the first order
Taylor expansion to (23) around (ακφ/γ2) = 0 that is given
by:

δ ≈

√
γ

κ

(
1−

(
1− ακφ

2γ2

))
=

√
φα

2γ
, (27)

5One can expect that for the case in which ρ = ±1, i.e., the two signals
are linearly dependent, the approximation made using a first order Taylor ex-
pansion is not sufficiently tight w.r.t. the true model (In fact, as will be shown
in Fig. 4, our approximation only loses its tightness when ρ → 1, while it
remains good when ρ → −1.) Thus in this case it entails a higher order
Taylor expansion and thereby involves solving a sextic equation, the detailed
analysis of which, unfortunately, is due to the space limitation beyond the
scope of this paper.
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which is the same expression as (24), independent of ρ̃. Fur-
thermore, Fig. 4 also shows that our approximated expression
of δ loses its tightness w.r.t. the true δ (acquired numerically),
only when ρ→ 1.

• The dependence of δ on the signal strengths is reflected in the
expression of φ (cf. (22)), where we see that if the strength
of one signal is much greater than the other, e.g., ε1 � ε2,
then φ ≈ 1/(N · SNR2), and δ becomes restricted by the
weaker signal. Thus enhancing the strength of only one signal
cannot infinitely diminish δ, as is shown by Fig. 5, in which
we increase ε1 from 1 to 1000 while keep ε2 = 1, and find
that δ converges to a certain value (determined by ε2).

• Fig. 5 also investigates the impact of the sensor array geome-
try on δ (cf. Table 1) and reveals that a loss of sensors in the
array configuration has a considerable impact on δ only when
it causes a diminution of the aperture size of the array, as in
the case of Type 1. If, however, the array aperture remains un-
changed, as in the case of Type 2, this impact is considerably
mitigated.

Array Type Geometric Configuration

Type 1 ◦ • • ◦ • • ◦ ◦
Type 2 • ◦ ◦ ◦ ◦ • • •
Type 3 • • • • • • • •

Table 1. Different array geometric configurations. • and ◦ represent
the position of sensors and missing sensors, respectively. The inter-
element spacing is half-wave length.
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Numerical (true) δ, ρ=−0.5

Fig. 1. Numerical and analytical δ vs. σ2 for ε1 = ε2 = 1, with
ρ = 0.5 + 0.5j and ρ = −0.5, respectively.

5. SUMMARY

This paper studies the angular resolution between two closely spaced
correlated deterministic sources and provides a closed-form expres-
sion for the ARL δ, the validity of which is confirmed by numerical
simulations. Our expression reveals that δ is not dependent on the
special waveforms of the signals, but only on their strengths and the
correlation factor between them, and that the imaginary part of ρ
only has a negligible impact on δ, while the impact of the real part
of ρ is decisive. Furthermore, it shows that δ is constrained by the
weaker signal, and therefore cannot be infinitely decreased. Finally
the impact of different array geometries on δ is discussed.
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