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ABSTRACT

In this work we investigate the sample complexity of support recov-
ery in sparse signal processing models, with special focus on two
compressive sensing scenarios. In particular, we consider models
where N covariates X = (X1, . . . , XN ) along with outcome Y
are observed, with the assumption that the outcome Y is condition-
ally independent of the other covariates given K � N covariates.
Using asymptotic information theoretic analyses, we establish suffi-
cient conditions on the number of samples in order to successfully
recover theK salient covariates. We apply our results to two variants
of the compressive sensing (CS) problem: (1) compressive sensing
with a measurement noise model, (2) 1-bit quantized compressive
sensing. In both models we consider sensing with independent and
correlated Gaussian sensing matrices. We show that the sufficiency
bounds we obtain on the number of measurements in both cases are
comparable to the best known bounds while providing a novel per-
spective for the theoretical analysis of such models. In addition, we
quantify how the correlation between the sensing columns affects the
number of measurements. Our findings for the CS models demon-
strate the applicability and flexibility of our general results on the
sample complexity in sparse signal processing models.

Index Terms— Sparse signal processing, compressive sensing,
1-bit compressive sensing, information theory

1. INTRODUCTION

Recent advances in sensing and storage systems have led to the pro-
liferation of high-dimensional data such as images, video or genomic
data. Such data cannot be processed efficiently using conventional
signal processing methods due to their dimensionality. However,
high-dimensional data often exhibit an inherent low-dimensional
structure, so they can often be represented “sparsely” in some basis
or domain. The discovery of an underlying sparse structure is im-
portant in order to compress the acquired data or to develop more
robust and efficient processing algorithms.

In this paper, we are concerned with the asymptotic analysis
of the sample complexity in problems where we aim to identify a
set of salient covariates responsible for producing an outcome Y .
In particular, we assume that among a set of N covariates X =
(X1, . . . , XN ), only K covariates (indexed by set S) are directly
relevant to the outcome Y . We formulate this with the assumption
that given XS = {Xn}n∈S , outcome Y is independent of other
covariates {Xn}n6∈S , i.e.,

P (Y |X) = P (Y |XS). (1)
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Fig. 1. Compressive sensing example and its mapping to the channel
model.

We assume we are given T sample pairs (X,Y ) and the problem
is to identify the set of salient covariates, S, from these T samples
given the knowledge of observation model P (Y |XS). Our analysis
aims to establish sufficient conditions on T in order to recover the
set S with an arbitrarily small error probability in terms ofK,N , the
observation model and other model parameters such as the signal-to-
noise ratio.

In addition to the compressive sensing models that will be inves-
tigated in this paper, many problems from different areas of signal
processing can be formulated in the general sparse recovery frame-
work. Examples include problems such as group testing [1], ar-
ray signal processing [2], sparse channel estimation [3] or graphical
model selection [4]. Consequently, the sample complexity of support
recovery in such problems can also be analyzed using the framework
presented herein.

The analysis of the sample complexity is performed by posing
this identification problem as an equivalent channel coding problem.
The salient set S corresponds to the message transmitted through a
channel. The set S is encoded by XT

S of length T , which is the col-
lection of codewords XT

n for n ∈ S, from a codebook XT . The
coded message XT

S is transmitted through a channel P (Y |XS) with
output Y T . As in channel coding, our aim is to identify which mes-
sage S was transmitted given channel output Y T and the codebook
XT .

The identification problem was first formulated in a channel cod-
ing framework in [1], where it was used to determine sufficient and
necessary conditions on the number of tests in the group testing
problem with independent and identically distributed (i.i.d.) test as-
signments. The sufficient condition was derived based on the anal-
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ysis of a Maximum Likelihood (ML) decoder, while the necessary
condition was derived using Fano’s inequality [5]. The analysis was
extended to general sparse signal processing models with i.i.d. co-
variates in [6]. The results were further extended to symmetric de-
pendent covariates, utilizing a typicality idea for covariate realiza-
tions in [7].

In this paper, we focus on the applications of our results to
two compressive sensing problems. First, we state results for
general sparse models with an observation model in the form of
P (Y |XS , βS) where βS is a latent random variable with prior
P (βS). For instance, in the context of compressive sensing, βS
corresponds to the values of the non-zero coefficients of the support.
This observation model extends our framework presented in [7]
and allows for more flexibility in the analysis of sparse recovery
problems. Then, using the bounds presented in this paper for gen-
eral sparse models, we derive sufficient conditions for the two CS
problems, with both independent and correlated Gaussian sensing
matrices. The first CS problem we consider herein is linear CS with
measurement noise [8]. The second one is the 1-bit CS problem [9],
which is a non-linear model in contrast to the linear CS model.

Compressive sensing is a fairly well-studied problem. The con-
ditions for recovery in linear CS with measurement noise has been
described and studied extensively in the literature [8, 10, 11, 12,
13, 14, 15] through the analysis of properties such as the restricted
isometry property [16], as well as using information-theoretic ap-
proaches. It has been established that T = Ω(K log(N/K)) is a
sufficient condition for support recovery. While our analysis also
relies on information theoretic techniques, the CS bounds are de-
rived using our results for general sparse models and also account
for sensing matrices with dependent columns.

1-bit CS [9] is interesting as the extreme case of CS models with
quantized measurements, which are of practical importance in many
real world applications. The conditions on the number of measure-
ments have been studied for both noiseless [17] and noisy [18] mod-
els and T = Ω(K logN) has been established as a sufficient condi-
tion for independent Gaussian sensing matrices.

In the next section, we provide a mathematical description of the
considered problems. In Section 3, we state our sufficiency bounds
for general models. Section 4 follows with the application of the
bounds to CS models. Lastly, in Section 5 we provide some con-
cluding remarks.

2. PROBLEM SETUP

We use upper case and lower case letters to distinguish between ran-
dom quantities and their realizations. Subscripts and superscripts
are used for column and row indexing, as explained in Table 1. Sub-

Table 1. Reference for notation used

Random quant. Realization
Covariates X1, . . . , XN x1, . . . , xN
1×|S| random vector XS xS
T×N random matrix XT xT

t-th row of XT X(t) x(t)

n-th column of XT XT
n xTn

n-th el. of t-th row X
(t)
n x

(t)
n

T×|S| sub-matrix XT
S xTS

Outcome Y y
T×1 outcome vector Y T yT

t-th element of Y T Y (t) y(t)

scripting with a set S implies a selection of columns with indices
in S. log is used to denote logarithm to the base 2 and the natural
logarithm is denoted by ln.

Let X = (X1, X2, . . . , XN ) ∈ XN denote a set of either i.i.d.
or exchangeable random covariates with a joint probability distribu-
tion P (X). An exchangeable sequence of random variables have
the property that the joint probability distribution is invariant to any
permutation of the random variables in the sequence, i.e., for any
permutation mapping σ,

PX1,...,XN (x1, . . . , xN ) = PXσ(1),...,Xσ(N)
(x1, . . . , xN ).

This assumption implies that for any set S ⊂ {1, 2, . . . , N}, the set
of covariates {Xk}k∈S is also exchangeable. Hence, XS is identi-
cally distributed for sets S that have the same cardinality. This as-
sumption also implies that all dependencies between covariates are
symmetric.

In view of the aforementioned symmetry, we use the compact
notation Ii,j to denote the mutual information [5] between two dis-
joint sets of i and j covariates, i.e., for continuous covariates,

Ii,j =

∫
Xj

∫
X i
P (xS1 , xS2) log

P (xS1 , xS2)

P (xS1)P (xS2)
dxS1 dxS2 .

This quantity is zero for all i, j, for i.i.d. covariates and identical for
any two disjoint sets with i and j elements.

We let Y ∈ Y denote an observation or outcome, which depends
only on a small subset of covariates S ⊂ {1, . . . , N} of known car-
dinality |S| = K where K � N . In particular, Y is conditionally
independent of the covariates given the subset of covariates indexed
by the index set S, as in (1).

We consider an observation model with a latent random param-
eter βS . We assume βS is independent of covariates X and has a
prior distribution P (βS). The outcomes depend on both XS and βS
and are generated according to the model P (Y |XS , βS). This latent
variable corresponds to the non-zero coefficients of the K-sparse
vector β in the CS framework (2). Note that (1) still holds in this
model.

We observe the realizations (xT , yT ) of T covariate-outcome
pairs (XT , Y T ). The covariates X(t) are distributed i.i.d. across
t = 1, . . . , T . Note that the outcomes Y (t) are independent for
different t only when conditioned on βS .

We define the sample mutual information for a matrix xT and
two sets S1, S2 as

ÎS1,S2(xT ) =
1

T

T∑
t=1

log
P (x

(t)
S1
, x

(t)
S2

)

P (x
(t)
S1

)P (x
(t)
S2

)
.

We let Ŝ(XT , Y T ) denote the estimate of the set S and P (E)
denote the average probability of error, averaged over all sets S of
size K, all possible data samples XT and outcomes Y T , i.e.,

P (E) = P (Ŝ(XT , Y T ) 6= S).

For the compressive sensing with output (measurement) noise
problem, we have the following normalized model [13],

Y T = XTβ +WT (2)

where XT is the T × N sensing matrix, β is a K-sparse vector of
length N with support S, WT is the measurement noise of length
T and Y T is the observation vector of length T . In particular, we
assume that X(t) is a jointly Gaussian random vector and the vec-
tors are independent across rows t. We assume that each element
X

(t)
i has zero mean, elements in different columns are correlated
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with correlation coefficient ρ and each element has variance 1
TρK ,

where ρK = 1 + (K − 1)ρ. In other words, different columns have
correlationE[X

(t)
i X

(t)
j ] =

ρ
TρK for any i 6= j, for all t. We assume

that each element of WT is distributed i.i.d. with W ∼ N
(
0, 1

SNR

)
.

For independent sensing columns ρ = 0 and ρK = 1, therefore the
above formulation reduces to the model in [13].

For the 1-bit compressive sensing model, we have

Y T = Q(XTβ) (3)

where XT and β are as before and Q(·) is a 1-bit quantizer which
outputs 1 if the input is non-negative and 0 otherwise, for each ele-
ment of the input vector.

In order to analyze the CS problems using the proposed sparse
signal processing framework, it is important to observe how the CS
model as defined above can be mapped to the general sparse model,
as illustrated in Figure 1. In the case of CS, the elements in a row
of the sensing matrix correspond to covariates X1, . . . , XN as de-
fined in the beginning of this section. Each row of the sensing
matrix is a realization of X and rows are generated i.i.d. to form
XT . It is easy to see that assumption (1) is satisfied in both mod-
els, since each measurement Y (t) depends only on the linear com-
bination of the elements X(t)

S that correspond to the support of β.
The coefficients of this combination are given by βS , the values of
the non-zero elements of β. βS corresponds to the latent param-
eter of the observation model P (Y |XS , βS). In the linear case,
P (Y |XS , βS) incorporates the measurement noise W . In the quan-
tized case, the observation model can be defined as P (Y |XS , βS) =
1{(Y− 1

2
)〈XS ,βS〉≥0}, for Y ∈ {0, 1}.

3. CONDITIONS FOR RECOVERY

In this section we present our sufficiency conditions for the sample
complexity of the support recovery problem with the latent variable
observation model introduced in Section 2. Note that with βS fixed
and known, the bounds below reduce to the bounds in [7]. The proofs
of the theorems stated in this section are omitted due to space con-
straints and we refer the reader to [19] for further details.

3.1. Sufficiency – IID covariates

In order to derive our sufficiency bounds, we consider the error prob-
ability of an ML decoder. The ML decoder goes through all

(
N
K

)
sets

of size K and outputs the set S? such that

PY T |XT
S

(yT |xTS?) ≥ PY T |XT
S

(yT |xTŜ ), ∀Ŝ, |Ŝ| = K,

where PY T |XT
S

is the observation distribution conditioned on the
true set S, averaged over values of βS . We define the error event
E to be the event (S? 6= S) with average error probability P (E).
Note that the ML decoder requires the knowledge of the observation
model P (Y |XS , βS) and the prior P (βS).

Theorem 3.1 Define Ξ
{i}
S as the set of tuples (S1,S2) partitioning

the true set S into disjoint sets S1 and S2 with cardinalities i and
K − i, respectively, i.e.,

Ξ
{i}
S =

{
(S1,S2) : S1 ∩ S2 = ∅,

S1 ∪ S2 = S, |S1| = i, |S2| = K − i
}
.

If the number of samples T is such that

T > (1 + ε) · max
i=1,...,K,

(S1,S2)∈Ξ
{i}
S

log
(
N−K
i

)(
K
i

)
I(XS1 ;XS2 , Y |βS)

, (4)

then, asymptotically the average error probability approaches zero,
i.e.,

lim
K→∞

lim
N→∞

P (E) = 0,

where ε > 0 is an arbitrary constant independent of N and K and
I(XS1 ;XS2 , Y |βS) is the mutual information [5] betweenXS1 and
(XS2 , Y ) conditioned on βS . 1

Intuitively, the bound in (4) can be explained as follows: For
each i, the numerator is the number of bits required to represent all
sets that differ from S in i elements. The denominator represents the
information given by the subset S2 of K − i true elements and the
output variable Y about the remaining i covariates S1. Hence, the
ratio represents the number of samples needed to control i support
errors and the maximization accounts for all possible support errors.

3.2. Sufficiency – Dependent covariates

We define a notion of δ-typicality for realizations of the covariate
matrix xT . Intuitively, δ-typicality holds when the sample mutual
information between a candidate set Ŝ and the real set S are δ-close
to the true mutual information.

We now mathematically define the collection of δ-typical matri-
ces Gδ . First, define

Ai = {Ŝ : |Ŝ| = K, |S ∩ Ŝ| = K − i},

as the collection of sets that differ from set S in i elements, for i =
1, . . . ,K. For such sets, we define

Gδ,i,Ŝ =
{
xT :

∣∣∣ÎŜ\S,S(xT )− Ii,K
∣∣∣ ≤ δ,∣∣∣ÎS∩Ŝ,S\Ŝ(xT )− Ii,K−i

∣∣∣ ≤ δ}, Ŝ ∈ Ai,

where \ is the set difference operator, i.e., A\B = A∩Bc. Finally,
we define the collection of typical matrices as

Gδ =

K⋂
i=1

⋂
Ŝ∈Ai

Gδ,i,Ŝ . (5)

In order to analyze the probability of error, we first separate the
error event into two events: the identification error with a typical co-
variate matrix and the error with an atypical covariate matrix, hence,

P (E) ≤ P (E,XT ∈ Gδ) + P (XT 6∈ Gδ).
For the first type of error, we have the following sufficiency bound.

Theorem 3.2 If the number of samples T is such that

T > (1 + ε) · max
i=1,...,K,

(S1,S2)∈Ξ
{i}
S

log
(
N−K
i

)(
K
i

)
I(XS1 ;XS2 , Y |βS)− Ii,K − 3δ

, (6)

then, the error probability P (E,XT ∈ Gδ) asymptotically ap-
proaches zero, i.e.,

lim
K→∞

lim
N→∞

P (E,XT ∈ Gδ) = 0,

for any δ > 0 for which the denominator is positive and an arbitrary
constant ε > 0 independent of N and K. Note that δ can be chosen
to scale with K. 1

1The results stated in this paper are valid for the case where the support
size K is fixed with respect to the dimension N . We refer the reader to [19]
for results for the more general regime K = o(N), where K and N scale
simultaneously.
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The result we obtain is similar to the independent case, except
for penalties in the denominator induced by the dependencies be-
tween covariates.

Although it is easy to see that the δ-typicality holds asymptot-
ically for any δ > 0 by the law of large numbers, its probability
depends on the scaling of T with respect to K, N and δ. This rela-
tionship should be investigated to show that P (XT 6∈ Gδ)→ 0 and
therefore P (E)→ 0, using Theorem 3.2.

The analysis of P (XT 6∈ Gδ) depends on the covariate dis-
tribution P (X). For instance we provide a sufficient condition for
Gaussian covariates in Section 4 and Theorem 3.2 in [7] provides a
sufficient condition that is useful for discrete covariates.

4. APPLICATIONS TO CS MODELS

In this section, utilizing the sufficiency bound of Theorem 3.2, we
derive sufficient conditions on T to recover S for the linear CS and
1-bit CS problems. To simplify the analysis and exposition, we an-
alyze the degenerate case of β ∈ {0, 1}N , i.e., the latent variable
βS is known and equal to the vector of 1’s. However, the general
case where βS is random with a known prior distribution can also be
analyzed using the condition given by Theorem 3.2.

In order to obtain the model-specific bounds, we analyze the
conditions for δ-typicality with correlated Gaussian sensing columns
and the terms I(XS1 ;XS2 , Y |βS) and Ii,K for the two problems.
For brevity, the proofs are deferred to [19].

First, we state a sufficient condition for δ-typicality for corre-
lated Gaussian columns (as formulated in Section 2) in the following
lemma.

Lemma 4.1 For symmetrically dependent Gaussian sensing columns
with correlation coefficient ρ, T = Ω(K logN) samples are asymp-
totically sufficient to satisfy the δ-typicality (5) for δ = Ω(ρK), i.e.,
if δ = Ω(ρK) and T = Ω(K logN), P (Gδ)→ 1 as K,N →∞.

For the following results, let α = i
K

denote the support distor-
tion, i.e., the ratio of misidentified elements of the support S. Note
that 1

K
≤ α ≤ 1.

4.1. Compressive sensing with measurement noise

We obtain the following lemma by analyzing the CS model.

Lemma 4.2

I(XS1 ;XS2 , Y )− Ii,K

=
ln 2

2
log

([
1 + α

Kρ

ρK

]
·

[
1 + α

1− P Kρ
ρK

P − 1

])

where P = 1 + T/(K · SNR). Note that the equality holds for any
value of K, N , T , ρ and SNR.

Note that δ should satisfy that δ = O(I(XS1 ;XS2 , Y )− Ii,K)
for all α in view of Theorem 3.2, along with δ = Ω(ρK) to satisfy
the δ-typicality condition.

Combining Lemma 4.1 and 4.2, considering all values of α for
exact recovery and noting that the numerator log

(
N−K
i

)(
K
i

)
=

Θ(αK logN), we can readily state the following theorem.

Theorem 4.1 For compressive sensing with independent or corre-
lated Gaussian sensing columns with correlation coefficient ρ =
O( 1

K2 ) and SNR = Ω(logN) (which is a necessary condition for
recovery [13]), T = Ω(K logN) measurements are sufficient to re-
cover S, the support of β, with an arbitrarily small error probability.

0.001 0.01 0.10.050.005

0.3

0.4
0.5

1

2

3

4
5

ρ

T
N

T
N

 vs ρ for different SNR/logN values

 

 
5 dB
10 dB
15 dB
20 dB

Fig. 2. Effects of ρ and SNR on the sufficient number of measure-
ments given by Lemma 4.2 and Theorem 3.2, evaluated for K = 50
and N = 10000, where TN = T/(K log(N/K)).

Figure 2 illustrates our sufficiency bound for the number of mea-
surements as a function of correlation coefficient ρ for different val-
ues of SNR, evaluated for finite K and N . The vertical axis of
the figure represents the number of measurements normalized by
K log(N/K). As expected, increasing the correlation increases the
number of measurements. Similary, increasing SNR decreases the
number of measurements.

4.2. 1-bit quantized compressive sensing

We obtain a similar result in the 1-bit CS problem, with a less strin-
gent condition on the correlation coefficient ρ.

Theorem 4.2 For 1-bit CS with independent or correlated Gaus-
sian columns with correlation coefficient ρ = O( 1

K
√
K

), T =

Ω(K logN) measurements are sufficient to recover the support S
with an arbitrarily small error probability.

5. CONCLUSIONS

Based on the analysis of a general sparse model, we obtained a
bound which is asymptotically identical to the best-known bound
T = Ω(K log(N/K)) [13] for the linear CS problem with an inde-
pendent Gaussian sensing matrix, in the sublinear sparsity regime.
Similarly, for 1-bit CS we provide a sufficiency bound that matches
[17] for independent covariates.

In addition, this analysis provides insight into how the depen-
dence of the columns of the sensing matrix could affect the perfor-
mance for the two problems. It is also shown that with a correla-
tion coefficient that vanishes polynomially in K, the performance is
identical to sensing with independent columns in both cases.

By leveraging bounds derived for a general sparse model, we es-
tablished explicit sufficient conditions for the two variants of the CS
framework, namely linear CS and 1-bit CS. Therefore we demon-
strated that we can obtain tight and useful bounds for sparse recov-
ery problems of interest, using the results for the general model pre-
sented in [7] and this paper. The flexibility of our formulation also
allows the application of our results to many other sparse recovery
problems that have not been mentioned in this paper.
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[2] D. Malioutov, M. Çetin, and A.S. Willsky, “A sparse signal
reconstruction perspective for source localization with sensor
arrays,” IEEE Trans. Signal Process., vol. 53, no. 8, pp. 3010–
3022, 2005.

[3] S.F. Cotter and B.D. Rao, “Sparse channel estimation via
matching pursuit with application to equalization,” IEEE
Trans. Commun., vol. 50, no. 3, pp. 374 –377, March 2002.

[4] N. Santhanam and M.J. Wainwright, “Information-theoretic
limits of graphical model selection in high dimensions,” in
Proc. of the Int. Symp. on Information Theory (ISIT), July
2008, pp. 2136 –2140.

[5] T.M. Cover and J.A. Thomas, Elements of Information Theory,
New York: John Wiley and Sons, Inc., 1991.

[6] G. Atia and V. Saligrama, “A mutual information character-
ization for sparse signal processing,” in Proc. of Int. Colloq.
on Automata, Languages and Programming (ICALP), Switzer-
land, July 2011.

[7] C. Aksoylar, G. Atia, and V. Saligrama, “Sample complexity
of salient feature identification for sparse signal processing,”
in Proc. IEEE Statistical Signal Processing Workshop (SSP),
Aug. 2012, pp. 329–332.

[8] D.L. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory,
vol. 52, no. 4, pp. 1289 –1306, April 2006.

[9] P.T. Boufounos and R.G. Baraniuk, “1-bit compressive sens-
ing,” in Proc. of Conf. on Information Sciences and Systems
(CISS), March 2008, pp. 16–21.

[10] M. Wainwright, “Information-theoretic bounds on sparsity re-
covery in the high-dimensional and noisy setting,” in Proc.
of the Int. Symp. on Information Theory (ISIT), Nice, France,
June 2007.

[11] A.K. Fletcher, S. Rangan, and V.K. Goyal, “Necessary and suf-
ficient conditions for sparsity pattern recovery,” IEEE Trans.
Inf. Theory, vol. 55, no. 12, pp. 5758–5772, 2009.

[12] M.J. Wainwright, “Sharp thresholds for high-dimensional and
noisy sparsity recovery using `1-constrained quadratic pro-
grams,” in Allerton Conf. on Communication, Control and
Computing, Monticello, IL, 2006.

[13] S. Aeron, M. Zhao, and V. Saligrama, “Information theoretic
bounds for compressed sensing,” IEEE Trans. Inf. Theory, vol.
56, no. 10, pp. 5111–5130, Oct. 2010.

[14] M. Akcakaya and V. Tarokh, “Shannon-theoretic limits on
noisy compressive sampling,” IEEE Trans. Inf. Theory, vol.
56, no. 1, pp. 492–504, Jan.

[15] Y. Wu and S. Verdu, “Optimal phase transitions in compressed
sensing,” IEEE Trans. Inf. Theory, vol. 58, no. 10, pp. 6241–
6263, Oct.

[16] E.J. Candes, “The restricted isometry property and its impli-
cations for compressed sensing,” Comptes Rendus Mathema-
tique, vol. 346, no. 910, pp. 589–592, 2008.

[17] L. Jacques, J.N. Laska, P.T. Boufounos, and R.G. Baraniuk,
“Robust 1-bit compressive sensing via binary stable embed-
dings of sparse vectors,” arXiv preprint arXiv:1104.3160,
2011.

[18] A. Gupta, R. Nowak, and B. Recht, “Sample complexity for
1-bit compressed sensing and sparse classification,” in Proc.
of the Int. Symp. on Information Theory (ISIT), June 2010, pp.
1553–1557.

[19] C. Aksoylar, G. Atia, and V. Saligrama, “Supple-
mentary notes,” http://people.bu.edu/aksoylar/
icassp2013_extended.pdf, March 2013.

5528


