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ABSTRACT

We propose a minimax robust hypothesis testing strategy between
two composite hypotheses determined by the neighborhoods of two
nominal distributions with respect to the squared Hellinger distance.
The robust tests obtained are the nonlinearly transformed versions
of the nominal likelihood ratios, whereas the least favorable densi-
ties are derived in three different regions. In two of them, they are
scaled versions of the corresponding nominal densities and in the
third region they form a composite version of the two nominal den-
sities. The outcomes and implications of the proposed robust test are
discussed through comparisons with the recent literature.

Index Terms— Detection, hypothesis testing, robustness

1. INTRODUCTION

Detection theory has been the key driver of many practical ap-
plications, such as radar, sonar, seismology, communications, or
biomedicine. An event, for instance the existence or absence of a
target is modeled statistically in terms of hypothesis testing. An
optimum decision rule requires exact knowledge of the conditional
densities under each hypothesis (H0 and H1). However for many
practical applications, either the conditional densities are not com-
pletely known, possibly arising from physical considerations with a
few unknown parameters [1], or can be affected by outliers such as
impulsive noise [2], e.g., EEG signal contaminated by artifacts, i.e.,
high amplitude spikes.
In the case of exact modeling of the conditional densities, there exist
some drawbacks. First, only some small deviations from the model
assumptions, in other words a few bad observations (outliers), may
upset the test statistics. On the other hand, the test procedure can
never maintain a certain level of performance, therefore any possible
performance degradation can not be foreseen. In such cases, the
probability distributions are modeled to belong to the class of distri-
butions, called the uncertainty class in the vicinity of some nominal
distributions [3].
The main idea of robust hypothesis testing is to maximize the de-
tection performance for the worst case densities determined from
the uncertainty class. Accordingly, a certain level of detection is
always maintained. This procedure is called minimax detection and
regarded as conservative because it assumes no a-priori knowledge
about the conditional densities.
One of the earliest works in this area has been presented by Huber
in 1965 where he introduced the existence of least favorable densi-
ties as well as the robust version of the likelihood ratio test for the
ǫ-contaminated class of distributions [2]. The robust test is achieved
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by clipping the nominal likelihood ratios and it provides a very
elegant way of modeling outliers. However, as mentioned before,
not all uncertainties are due to outliers; some of them result from a
modeling mismatch.
In [4], the uncertainty classes have been constructed using the rel-
ative entropy constraint. The authors assign any density function,
which is at least ǫ-close to the nominal density to the corresponding
class. The motivation behind the use of the relative entropy as a
distance is two-folds. First, it is a natural metric for model mis-
match, and second, it forms a natural distance between statistical
models [5]. This paper has two basic assumptions, one of which
is the monotone increasing likelihood ratio constraint and the other
one is the symmetry of the nominal densities. Monotonicity of the
likelihood ratio is a basic requirement for mathematical tractability
and can be circumvented in the testing stage. However, the symme-
try constraint imposes a substantial restriction of the selection of the
nominal densities. Moreover, the relative entropy is not a metric,
neither symmetric nor satisfies the triangle inequality, and scales in
[0,∞].
We propose an alternative approach for modeling errors, consider-
ing the squared Hellinger distance. It scales in [0, 1], which makes
the choice of ǫ simpler, and it is a symmetric distance measure.
Moreover, the design in this paper doesn’t require the symmetry
assumption between the nominal densities.
The organization of this paper is as follows. In the next section we
present the problem setup by introducing the preliminaries, mini-
max decision rules and finally the derivation of the least favorable
densities (LFDs), and the corresponding decision rules. In section
3, some examples and numerical results are provided whereas in the
last section the paper is concluded.

2. PROBLEM FORMULATION

2.1. Preliminaries

Consider a binary hypothesis testing problem defined on a probabil-
ity space (Ω,A , Pi),

H0 : Y ∼ f0(y)

H1 : Y ∼ f1(y), (1)

where Ω = R and Y is a random variable which has a density fi(y)
when Hi is true. The density function fi(y) models a phenomenon
such as the existence or absence of a signal in white Gaussian noise.
Given an observation y, a randomized decision rule u(y) ∈ ∆ is a
pointwise Bernoulli random variable with a success probability δ(y),
where ∆ stands for the set of all possible decision rules. A random-
ized decision rule can simply be specified by defining a function
bounded in [0,1] on the real numbers. An optimum decision strat-
egy, which minimizes the probability of error under both Bayesian
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and Neyman-Pearson (NP) sense is the likelihood ratio test

L(y) =
f1(y)

f0(y)

u=1

≷
u=0

γ, (2)

where γ is a constant threshold [6, pp. 65, 81]. The losses incurred
from a chosen decision rule u(y) ∈ ∆, given that H0 is true,

P 1
E(δ, f0) =

∫

R

δ(y)f0(y)dy (3)

and H1 is true,

P 2
E(δ, f1) =

∫

R

(1− δ(y))f1(y)dy (4)

are called false alarm and miss detection probabilities respectively.
Eq. (2) also implies that no randomized decision rule can improve
the Bayes or NP risk attained with a nonrandomized decision rule.
Assuming (in Bayes’ sense) that the costs of errors (false and miss
detections) are the same and equal to one and the costs of type I
and type II detections are zero, the minimum error detection can be
written as

PE(δ, f0, f1) = P (H0)P
1
E(δ, f0) + P (H1)P

2
E(δ, f1). (5)

In the next subsections, minimax rules, the existence of solutions to
the minimax equations and the considered class of distributions are
introduced.

2.2. Minimax Detection

Robust hypothesis testing differs from hypothesis testing which min-
imizes the error probability w.r.t. the nominal densities fi via con-
sidering a set of densities Fi where each member of the set gi is
at least ǫ-close to fi, i = 0, 1. We consider the squared Hellinger
distance

S(gi, fi) = H2(gi, fi) =
1

2

∫

R

(

√

gi(y)−
√

fi(y)
)2

dy (6)

to built the proximity sets,

Fi = {gi : S(gi, fi) ≤ ǫi}. (7)

Since the second derivative of (
√

gi(y) −
√

fi(y))
2 w.r.t. g is

greater than zero, it is convex, which also implies that Fi is con-
vex. Given the a-priori probabilities P (Hi), the probability of er-
ror, PE(δ, f0, f1), is linear therefore both convex and concave in all
three terms δ, f0, f1. Noting that F0 ×F1 as well as ∆ are found to
be both convex and compact [4], von Neumann’s minimax theorem
is applicable and we have

max
(g0,g1)∈F0×F1

min
δ∈∆

PE(δ, g0, g1) =

min
δ∈∆

max
(g0,g1)∈F0×F1

PE(δ, g0, g1), (8)

which also proves that there exists a unique solution to (8) with the
so called least favorable densities (ĝ0, ĝ1) ∈ F0 × F1 and the ro-
bust decision rule δ̂ ∈ ∆ [7]. The solution of (8) with {δ̂, (ĝ0, ĝ1)}
suggests a saddle point [4],

PE(δ, ĝ0, ĝ1) ≥ PE(δ̂, ĝ0, ĝ1) ≥ PE(δ̂, g0, g1). (9)

2.3. Derivation of LFDs and Robust Decision Rules

A robust detection scheme is completely specified by the deriva-
tion of least favorable densities (ĝ0, ĝ1) and a robust decision rule
δ̂. From [2], we know that if a solution to (8) exists, it also solves

P 1
E(δ̂, g0) ≤ P 1

E(δ̂, ĝ0) ≤ P 1
E(δ, ĝ0), (10)

and
P 2
E(δ̂, g1) ≤ P 2

E(δ̂, ĝ1) ≤ P 2
E(δ, ĝ1). (11)

The least favorable densities should satisfy the first inequalities in
(10) and (11). Therefore, we need to find some continuous function
gi(y) such that

ĝ0 = argmax
g0

P 1
E(δ, g0), ĝ1 = argmax

g1
P 2
E(δ, g1) (12)

subject to

gi(y) > 0, Υ(gi) =

∫

R

gi(y)dy = 1, gi(y) ∈ Fi, i = 0, 1 (13)

This can be done by using Lagrange multipliers [8] because the op-
timization parameter gi is convex in the constraints and concave in
P i
E , i = 0, 1. The positivity constraint will not be introduced ex-

plicitly as will be seen in the sequel the LFDs are always positive.
Consider the following two Lagrangians i = 0, 1 which are coupled
by δ̂(y),

Li(gi, λi, µi) = P i
E(δ̂, gi)+ λi(ǫ0 −S(gi, fi))+ µi(1−Υ(gi))).

(14)
The Lagrangian multipliers µi and λi are imposed such that gi are
densities and they belong to gi ∈ Fi. Eq. (14) can be explicitly
rewritten for P 0

E as

L0(g0, λ0, µ0) =

∫

R

δ̂(y)g0(y) + λ0ǫ0

− λ0

2

(

√

g0(y)−
√

f0(y)
)2

+ µ0 − µ0g0(y)dy. (15)

Similarly to obtain L1, (15) should be manipulated with the follow-
ing assignments: µ0 := µ1, λ0 := λ1, δ̂ := 1 − δ̂. Taking the
Gâteaux’s derivative [8] of (15), we get

∫

R

[δ̂(y) +
λ0

2
√

g0(y)

(

√

g0(y)−
√

f0(y)
)

− µ0]zdy (16)

where z is an arbitrary function. Therefore the maximization in (8)
reduces to the solution of

δ̂(y) +
λ0

2
√

g0(y)

(

√

g0(y)−
√

f0(y)
)

− µ0 = 0 (17)

for which we get the LFD under H0 as

ĝ0(y) =
1

(

1 + 2
(

µ0−δ̂(y)
λ0

))2 f0(y), (18)

and similarly under H1 as

ĝ1(y) =
1

(

1 + 2
(

µ1−1+δ̂(y)
λ1

))2 f1(y). (19)
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Clearly for any positive µi and λi, (18) and (19) are positive definite
as claimed before. To minimize the objective function in (8), we
have the likelihood ratio test between LFDs

L̂(y) =
ĝ1(y)

ĝ0(y)
=

(

1
2
+
(

µ0−δ̂(y)
λ0

))2

(

1
2
+
(

µ1−1+δ̂(y)
λ1

))2L(y), (20)

and the decision rule is of the form

δ̂(y) =











0, L̂(y) < P0

P1

Arbitrary, L̂(y) = P0

P1

1, L̂(y) > P0

P1

. (21)

For the sake of simplicity, we assume that a-priori probabilities are
equal and therefore the threshold in (21) can be taken as P0/P1 =
1. We use randomized decision rules instead of deterministic rules
since it allows us to determine unique LFDs under H0 and H1 when
L̂(y) = 1. As it can be seen, (18) and (19) are functions of δ̂(y),
which is defined in (21). When δ̂(y) = 0 or δ̂(y) = 1, (the two cases
in (21)), (18) and (19) have a simple scaled form of the nominal
densities. When L̂(y) = 1, we need to solve (20) in terms of δ̂(y)
and substitute the solution to either of (18) and (19). The solution of
(20) leads us rewrite (21) as

δ̂(y) =















0, L̂(y) < 1
2µ0λ1

√
L(y)+λ0

(

2−2µ1+λ1(−1+
√

L(y))
)

2
(

λ0+λ1

√
L(y)

) L̂(y) = 1

1, L̂(y) > 1
(22)

and define the least favorable distributions with respect to their den-
sities;

ĝ0(y) =























1

4
(

1

2
+

µ0

λ0

)

2 f0(y), L̂(y) < 1
(

λ0

√
f0(y)+λ1

√
f1(y)

)

2

(λ0+λ1+2(µ0+µ1−1))2
, L̂(y) = 1

1

4
(

1

2
+

µ0−1

λ0

)

2 f0(y), L̂(y) > 1

(23)

and

ĝ1(y) =























1

4
(

1

2
+

µ1−1

λ1

)

2 f1(y), L̂(y) < 1
(

λ0

√
f0(y)+λ1

√
f1(y)

)

2

(λ0+λ1+2(µ0+µ1−1))2
, L̂(y) = 1

1

4
(

1

2
+

µ1

λ1

)

2 f1(y), L̂(y) > 1

. (24)

Note that (20) has two roots and we consider the one given in (22).
Because the other root leads to gi(y) = 0 when λ0

√

f0(y) =

λ1

√

f1(y), and this contradicts with the constraints defined in (13).
As mentioned earlier, we assume that the nominal likelihood ra-
tio L(y) is monotonically increasing. Therefore, there is a one-to-
one correspondence between y ∈ R and L(y), which in turns im-
plies a one-to-one correspondence between y ∈ R and L̂(y) when
L̂(y) 6= 1 (c.f. (20)). To exploit this, we define two real numbers
yu and yl, (yu > yl) corresponding to the upper L̂(y) > 1 and
lower limits L̂(y) < 1 of LFDs. If we write the upper and lower
inequalities explicitly using (20) and assign δ̂(y) = 1 and δ̂(y) = 0,
respectively, we get the upper bound

yu = L−1

[(

1
2
+ µ1

λ1

1
2
+ µ0−1

λ0

)2]

(25)

and the lower bound

yl = L−1

[(

1
2
+ µ1−1

λ1

1
2
+ µ0

λ0

)2]

(26)

in terms of Lagrangian multipliers and the nominal likelihood ra-
tio. Accordingly, the limits in equations (22)-(24) can be rearranged
as L̂(y) > 1 → y > yu, L̂(y) = 1 → yu > y > yl and
L̂(y) < 1 → y < yl, if necessary. We note that the likelihood
ratio L̂(y) maps to a measurable set on Ω while L(y) maps to a
single point when L̂(y) = 1 and L(y) = 1, respectively. This is
mainly where the robustness comes from. Due to modeling errors
densities are known uncertainly around the point where L(y) = 1.
To account for this, some amount of density under each hypothesis
is delivered to the points at the neighborhood of L(y) = 1 as well as
to the tails where the other hypothesis is preferred. Note that when
yu > y > yl, both g0 and g1 are the same and no decision rule can
provide a detection rate below 0.5. However, as we have shown ear-
lier, there exists a unique decision rule when we allow randomized
decision rules.
So far we obtained the LFDs and the robust decision rule in four
parameters. In order to determine these parameters, we use two con-
straints imposed in the Lagrangian definition. Namely, we rewrite
(6) and the second equation in (13) for (23) and (24). Accordingly,
we obtain four nonlinear equations with four positive unknowns;

c1

∫ yl

−∞

f0(y)dy +

∫ yu

yl

Φ(y)dy + c2

∫

∞

yu

f0(y)dy = 1

c3

∫ yl

−∞

f1(y)dy +

∫ yu

yl

Φ(y)dy + c4

∫

∞

yu

f1(y)dy = 1

√
c1

∫ yl

−∞

f0(y)dy +

∫ yu

yl

√

Φ(y)f0(y)dy +
√
c2

∫

∞

yu

f0(y)dy

= 1− ǫ0

√
c3

∫ yl

−∞

f1(y)dy +

∫ yu

yl

√

Φ(y)f1(y)dy +
√
c4

∫

∞

yu

f1(y)dy

= 1− ǫ1 (27)

where

c1 =
1

4
(

1
2
+ µ0

λ0

)2 , c2 =
1

4
(

1
2
+ µ0−1

λ0

)2

c3 =
1

4
(

1
2
+ µ1−1

λ1

)2
, c4 =

1

4
(

1
2
+ µ1

λ1

)2

and

Φ(y) =

(

λ0

√

f0(y) + λ1

√

f1(y)
)2

(λ0 + λ1 + 2 (µ0 + µ1 − 1))2
.

3. EXAMPLES

In this section we perform some experiments to compare the results
with the recent literature. In the first experiment, we consider the
same example in [4]; f0 ∼ N (−1, 1) and f1 ∼ N (1, 1), where
N (µ, σ2) stands for the Gaussian density with mean µ and variance
σ2. Note that the symmetry condition f0(y) = f1(−y) is satis-
fied. Figures 1 and 2 illustrate the LFDs for Hellinger and Kullback-
Leibler distances when ǫ = ǫ0 = ǫ1 and yu = 0.608. We can see
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Fig. 1. LFDs based on Hellinger distance (symmetric)
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Fig. 2. LFDs based on relative entropy [4]

that Hellinger distance delivers less amount of density to the over-
lapping regions compared to relative entropy. This suggests that the
Hellinger distance is less conservative and thus provides higher de-
tection rates for the worst case densities. In Fig. 3, we show that
Hellinger distance is very sensitive to the small changes in ǫ com-
pared to the relative entropy distance. In the last experiment, we con-
sider f0 ∼ N (0, 1), f1 ∼ N (1, 1) for ǫ0 = 0.005 and ǫ1 = 0.0025.
Note that the densities doesn’t satisfy the symmetry constraint. In
Figure 4, we can see that the clipping (overlapping) region has a
non-symmetric shape w.r.t. L(y) = 1.

4. CONCLUSIONS

We have proposed a robust version of hypothesis testing, defining
the conditional densities in the proximity of the nominal densities
w.r.t. the squared Hellinger distance. The squared Hellinger dis-
tance, on the other hand, provides an alternative and elegant way of
such a robust design since it scales in [0, 1] and requires no sym-
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Fig. 3. Change in the overlapping region
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Fig. 4. LFDs based on Hellinger distance (non-symmetric)

metry assumption to construct robust tests. The drawback of the
Hellinger distance compared to the relative entropy is the computa-
tional complexity for densities satisfying the symmetry assumption.
This complexity can be reduced taking into account the symmetry
properties of the densities. The experimental results indicate that
the Hellinger distance delivers less amount of density to the region
where the nominal likelihood ratio is close to 1. This eventually
implies reduced loss of performance due to robustness compared to
the Kullback-Leibler distance. We have also justified that a little
increase in ǫ results in a wider range of clipping region.
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[8] D. P. Bertsekas, A. Nedić, and A. E. Ozdaglar, Convex Analysis
and Optimization, Athena Scientific, 2003.

5518


