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ABSTRACT
In this paper, we propose a novel robust estimator, called
ASEE (Adaptive Scale based Entropy-like Estimator) which
minimizes the entropy of inliers. This estimator is based
on IKOSE (Iterative Kth Ordered Scale Estimator) and LEL
(Least Entropy-Like Estimator). Unlike LEL, ASEE only
considers inliers’ entropy while excluding outliers, which
makes it very robust in parametric model estimation. Com-
pared with other robust estimators, ASEE is simple and
computationally efficient. From the experiments on both
synthetic and real-image data, ASEE is more robust than sev-
eral state-of-the-art robust estimators, especially in handling
extreme outliers.

Index Terms— robust statistics, model fitting, scale esti-
mation, entropy

1. INTRODUCTION

Robust parametric model estimation techniques in computer
vision underlie numerous applications such as motion seg-
mentation [1], range image segmentation [2], homography
estimation [3], fundamental matrix estimation [4], etc. The
key point of those robust methods is in that how to tolerate
the influence of noise and outliers, including pseudo-outliers
(i.e., structured outliers) and gross outliers.

In order to be robust to noise and outliers, many robust
methods have been proposed. The M-estimatros [5] and the
RANdom SAmple Consensus (RANSAC) estimator [6] are
the two widely used estimators. However, the M-estimators
can not tolerate more than 50% outliers; RANSAC can deal
with the data with more than 50% outliers, but its robust-
ness depends on an appropriate choice of an error tolerance
threshold. M-estimator SAmple Consensus (MSAC) [7] im-
proves the performance of RANSAC by changing its cost
function but it also needs the user to specify the error toler-
ance. Adaptive Least Kth Order Squares (ALKS) [8], Residual
Sample Consensus (RESC) [9], REsidual CONsensus (RE-
CON) [4], Adaptive Scale Sample Consensus (ASSC) [10],
and Adaptive Scale Kernel Consensus (ASKC) [11], etc., all
claim to be able to deal with more than 50% outliers. How-
ever, ALKS can not handle extreme outliers; RESC needs the
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user to tune many parameters in compressing a histogram;
RECON is very efficient but not effective in handling struc-
tured outliers; ASSC claims to be able to handle extreme out-
liers, but it is less effective in estimating model parameters
because it assigns equal weights to all inliers. Both ASSC
and ASKC employ the nonparametric kernel density estima-
tion techniques to estimate the inlier scale of data (i.e., the
TSSE scale estimator), which is computationally expensive
in finding local peak and local valley in residual space.

Relation to prior work: In [12], the Iterative Kth Or-
dered Scale Estimator (IKOSE) is proposed, which is very
robust in estimating inlier scale. Based on IKOSE, we can
distinguish inliers from outliers by using the estimated in-
lier scale. In [13], the Least Entropy-Like (LEL) estimator
is proposed, which minimizes the entropy of the whole data
but it does not differentiate inliers from outliers. Although
it is computationally efficient in computing model parame-
ters, the parameter estimate obtained by LEL is biased when
outlier percentage is increased. Based on IKOSE and LEL,
we propose an Adaptive Scale based Entropy-like Estimator
(ASEE), which minimizes inliers’ entropy. Compared with
other robust estimators, ASEE is very simple and computa-
tionally efficient, and it can tolerate more than 90% outliers.

2. THE PROPOSED METHOD

The parametric model estimation problem can be described
as follows: given a set of data points

X = [(x1, y1), . . . , (xN , yN )]t ∈ RN×(d+1)

(with the explanatory variables xi = (xi1, . . . , xid) ∈ Rd,
and the response variable yi ∈ R1), estimate the regression
coefficients of a parametric model θ̃ = (θ̃1, . . . , θ̃d)

t ∈ Rd

from X .
The classical linear regression model can be described as

follows:

yi = xi1θ1 + . . .+ xidθd + ei (i = 1, . . . , N). (1)

The error term ei is assumed to be normally distributed
with N(0, σ). Given an estimate θ̃, the residual ri correspond-
ing to the i-th data point is estimated by using the following
equation:

ri,θ̃ = yi − xi1θ̃1 − . . .− xidθ̃d (2)
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The goal of a robust estimator is to robustly estimate the
regression coefficients from input data which may involve a
large number of outliers.

2.1. Scale Estimation

Given an estimated inlier scale s̃, inliers can be distinguished
from outliers by satisfying the following equation:

|ri
s̃
| < γ (3)

where γ is a constant factor and is often chosen as 2.5 to iden-
tify 98% of a normal distribution as inliers.

Many robust scale estimators have been proposed during
the last decades. MEDian, MAD and KOSE [8] are the pop-
ular scale estimators. However, those scale estimators are of-
ten biased when outliers occupy the absolute majority of the
whole data. Recently, an Iterative Kth Ordered Scale Estima-
tor (IKOSE) [12] is proposed, which uses an iterative way to
estimate inlier scale. It can be written as follows:

s̃K ≡ |rK |
/
Φ−1[0.5(1 + κ′)] (4)

κ′ ≡ K/n′ (5)

where |rK | is the Kth ordered absolute residual, Φ−1[·] is the
augment of the normal cumulative density function, n′ is the
number of the inliers belonging to the model of interest and
the K value is fixed to be 10% of the whole data points.

After the scale of inlier noise is obtained by IKOSE, we
can distinguish inliers from outliers by using Eq. (3).

2.2. Performance of IKOSE in Scale Estimation

In this section, we compare the performance of eight scale es-
timators (MED, MAD, KOSE, ALKS, MSSE [14], EM [7],
TSSE [10] and IKOSE [12]). The “parallel lines” data is gen-
erated with a total number of 1000 data points. Fig. 1(a)
shows a snapshot of the data. Assuming that we know the
true parameters of the model by which we can calculate the
corresponding residuals and estimate the inlier scale by using
the scale estimators. The true inlier scale of the data is set to
1.0. The data point number of the first line (in the red color)
is gradually decreased from 900 to 100, at the mean time,
the data point number of the second line (in the blue color)
is fixed at 100, while the number of the gross noise increases.
Thus, for the first line, the outlier percentage is increased from
10% to 90%.

We compute the error of the estimated inlier scale by us-
ing the following equation [12]:

Υ(s̃, sT ) = max(
s̃

sT
− 1,

sT
s̃

− 1) (6)

where sT is the true inlier scale, and s̃ is the estimated inlier
scale.
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Fig. 1: Comparison in scale estimation: (a) a snapshot of the
“parallel lines” data with 90% outlier; (b) the error plots for
the eight scale estimators.

MED MAD KOSE ALKS MSSE EM TSSE IKOSE

Mean 11.46 11.21 1.73 1.14 0.25 0.65 0.20 0.11
Std.Var. 13.07 12.44 1.92 0.98 1.07 1.31 0.33 0.05
Max.Err. 36.96 34.28 8.93 7.67 8.58 8.02 2.02 0.35

Table 1: Quantitative comparison of the competing methods
to estimate inlier scale.

We repeat the experiments 60 times. Fig. 1(b) shows the
averaged results. Table 1 shows the mean, the standard vari-
ance and the maximum errors of the estimated inlier scale. It
can be seen from Fig. 1(b) and Table 1 that IKOSE achieves
the best performance among the eight competing methods.
Thus we choose IKOSE as the inlier scale estimator in our
method.

2.3. ASEE Algorithm

Recently, the author of [13] developed a Least Entropy-Like
(LEL) estimator. LEL is similar to RANSAC, M-estimators
and ASSC. The aim of that method is to find a cost function
to represent the scatter of the residuals (i.e., the entropy of
the data). It is built on the concept of the (Gibbs) entropy
[15]. LEL minimizes the entropy of the whole data and is
very computationally efficient in some circumstances, but it
does not distinguish the inliers from outliers. Moreover, the

Algorithm 1: The details of the ASEE algorithm
Input: A set of data points, the K value and the

number of hypothese η
Output: The model parameters θASEE.

1 for i = 1 to η do
2 Choose a minimal p-subset randomly.
3 Estimate the model parameters θi by using the p-subset.
4 Calculate residuals ℜ′.
5 Estimate inlier scale by using IKOSE.
6 Identify inliers by (3).
7 Calculate C, Ci=1...N , and Γi by (7) and (9).
8 if Γi < Γmin then
9 Γmin = Γi, and θASEE = θi

10 end
11 end
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LEL estimator’s penalty function is nonlinear and may have
multiple local minima [13].

Based on IKOSE and LEL, we propose a novel robust es-
timator called as ASEE (Adaptive Scale based Entropy-like
Estimator). It can identify inliers robustly by using the IKOSE
algorithm as described in Sec. 2.1 and then minimizes the en-
tropy of inliers while excluding outliers.

Having a model hypothesis, the residuals can be com-
puted by (2). Let the sum of the squared residuals denote as:

C =
N∑
i

r2i . Then, the prior probability of r2i can be written

as:

Ci =
r2i
C
,where Ci ∈ [0, 1] and

N∑
i=1

Ci = 1. (7)

The cost function of LEL is defined as follows [13]:

ΓLEL =


0 if Ci = 0,

− 1

logN

N∑
i=1

Ci log Ci otherwise.
(8)

In LEL, it considers the whole data points in its objective
function and finds the model parameters by minimizing
ΓLEL. However, outliers may have some negative influ-
ence on the results of LEL. Intuitively, it is more robust to
exclude outliers in the objective function which can improve
the robustness of LEL in estimating model parameters. Thus,
the objective function of ASEE is written as follows:

ΓASEE =


0 if Ci = 0,

− 1

Nk logNk

Nk∑
i=1

Ci log Ci otherwise.
(9)

where Nk is the number of the inliers in data.
Compare (9) and (8), we can see that only inliers are con-

sidered in the proposed ASEE, by which the robustness of
LEL is improved. Finally, ASEE can be written as follows:

θASEE = argmin
θ

ΓASEE (10)

We use a “randomly sampling” scheme to choose the best
hypothesis which yields the minimum score in (10), and suf-
ficient hypotheses are required like many other robust estima-
tors [6][10] for ASEE, so that at least one correct hypothesis
is found.

The details of ASEE are described in Algorithm 1.

3. EXPERIMENTS

In this section, we evaluate the performance of ASEE on sev-
eral synthetic and real image data. Firstly, we compare the
performance of ASEE with those of several other robust es-
timators (RANSAC, MSAC, ALKS, RESC, ASSC, LEL) in
line fitting by using synthetic data. Then we evaluate the per-
formance of the competing methods by using three real image
data.
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Fig. 2: Line fitting results: (a) the fitting results on the three-
step signal with 85% outliers; (b) the fitting results on the
signal involving clustered outliers and with 90% outliers.

Error in A Error in B
Mean Std. Var. Max. Err. Mean Std. Var. Max. Err.

RANSAC 0.018 0.035 0.183 0.556 1.560 8.031
MSAC 0.253 0.189 0.427 3.814 2.798 6.645
ALKS 0.078 0.115 0.350 1.922 3.164 11.786
RESC 0.054 0.111 0.375 0.812 1.380 4.814
ASSC 0.044 0.112 0.463 0.811 1.886 7.181
LEL 0.407 0.093 0.512 7.726 2.258 12.064

ASEE 0.015 0.002 0.019 0.446 0.127 0.784

Table 2: Evaluation of the seven robust estimators for line
fitting on the three-step signal.

Error in A Error in B
Mean Std. Var. Max. Err. Mean Std. Var. Max. Err.

RANSAC 0.078 0.243 0.986 2.074 6.023 23.915
MSAC 0.418 0.465 1.061 18.519 20.563 48.251
ALKS 0.099 0.250 0.882 4.064 9.800 34.759
RESC 0.234 0.711 2.908 17.892 54.557 228.064
ASSC 0.089 0.257 0.998 2.478 6.574 25.360
LEL 0.970 1.236 2.924 60.025 76.914 192.197

ASEE 0.006 0.001 0.009 0.326 0.062 0.531

Table 3: Evaluation of the seven robust estimators for line
fitting on the signal with clustered outliers.

3.1. Synthetic Data

Firstly, we generate a three-step signal with a total of 1000
data points which are distributed in the range of [0 100]. The
number of the data points belonging to the first line (in the red
color in Fig. 2(a)) is gradually decreased from 700 to 100, the
number of the data points belonging to the other three lines
is fixed at 100, while the number of gross noise is increased
from 0 to 600. Thus the outlier percentage for the first line is
increased from 30% to 90%. The fitting results obtained by
the competing methods are shown in Fig. 2(a). We repeat the
experiments 60 times and show the mean errors in A and in
B estimation (here, we use y = Ax + B as the line model)
at different outliers percentages in Fig. 3. We also show the
mean, the standard variance and the maximum of the errors in
A and B estimation in Table 2.

Secondly, we generate a signal with clustered outliers and
gross outliers. The total data point number of the signal is
1000. The number of the data points belongs to the line in
Fig. 2(b) is gradually decreased from 800 to 100. The num-
ber of the clustered outliers is fixed at 200 while the number
of the gross outliers gradually increases. Thus, the outlier per-
centage to the line is increased from 20% to 90%. We repeat
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Fig. 3: The error plot for the three-step signal: (a) and (b) are
the estimation errors in A and B vs. outlier percentage.
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Fig. 4: The error plot for the signal with clustered outliers:
(a) and (b) are the estimation errors in A and B vs. outlier
percentage.

the experiments 60 times and show the mean errors in A and
B at different outlier percentages in Fig. 4. The mean, the
standard variance and the maximum of the errors are shown
in Table 3.

From the results, we can see that ASEE achieves the best
performance among the seven robust estimators and it can tol-
erate up to 90% outliers. LEL begins to break down when the
outlier percentage is up to 30% for the three-step signal and
60% for the signal with clustered outliers. The other estima-
tors begin to break down as the outlier percentage increases.

3.2. Real Image Data

In this section, we will give three examples to show the ability
of ASEE in handling real image data.

The first example is to fit a coin1 edge by the seven robust
estimators. The edge image is obtained by using the Canny
operator with a threshold 0.42. 3645 data points are obtained
(as shown in Fig. 5(a)). The fitting results are shown in Fig.
5(b). ASEE fits the coin edge correctly, whereas RESC and
ASSC fit the coin edge less accurately. The other estimators
fail to correctly fit the edge of any coin.

The second example is to fit a line in the pavement im-
age, as shown in Fig. 6(a). The edge image is obtained by
using the Canny operator with a threshold 0.29. 41783 data
points are obtained. As Fig. 6(b) shows, ASEE gets the best
results. In comparison, ASSC is a little biased while the other
estimators completely fail.

1The image is taken from http://www.coinlink.com
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Fig. 5: Fitting the edge of a coin: (a) the obtained edge image;
(b) the results obtained by the seven estimators.
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Fig. 6: Fitting a line in the Pavement image: (a) the obtained
edge image; (b) the results obtained by the seven estimators.
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Fig. 7: Fitting a line of the Khufu Pyramid: (a) the obtained
edge image; (b) the results obtained by the seven estimators.

The third example is to fit the edge of the Pyramid in an
image2, as shown in Fig 7(a). We use the Canny operator with
a threshold 0.25 to get the edge image. 2644 data points are
obtained. The results are shown in Fig. 7(b). Only ASEE
correctly fits the line model while the other estimators totally
fail.

4. CONCLUSIONS

In this paper, we have proposed an efficient method, based
on IKOSE and LEL, to estimate model parameters. Differ-
ent to LEL, our method uses IKOSE to identify inliers and
exclude outliers effectively, and then minimizes the entropy
of the identified inliers. Compared with several other popular
estimators, ASEE is very simple to implement, effective and
efficient in practice, and more robust than other estimators,
especially in dealing with extreme outliers.
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