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ABSTRACT

This paper addresses the problem of recursive estimation of a
process in presence of outliers among the observations. It fo-
cuses on deriving robust approximate Kalman-like backward
filtering and backward-forward fixed-interval smoothing al-
gorithms in the context of linear hidden Markov chain with
heavy-tailed measurement noise. The proposed algorithms
are derived based on the backward Markovianity of the model
as well as the variational Bayesian approach. In a simulation
design, our algorithms are shown to outperform the classical
Kalman filter in the presence of outliers.

Index Terms— Backward Markovian models, Robust fil-
tering, Robust smoothing, Kalman-like algorithms, Variatio-
nal Bayes.

1. INTRODUCTION

The estimation problem of an unobservable process
x = {x0,x1, · · · ,xN} from an observed process y =
{y0,y1, · · · ,yN} has a particular interest in a number of
areas such as target tracking, autonomous navigation or wi-
reless communications [1] [2] [3]. This problem is usually
performed in the Linear and Gaussian Hidden Markov Chain
(LGHMC) and thereby, a number of efficient recursive algo-
rithms have been developed based on the dynamic structure
of this model. Let xn ∈ IRnx and yn ∈ IRny . It has been
shown that a LGHMC (x,y) is indeed a state-space model
[4] [5], {

xn+1 = Fnxn + un
yn = Hnxn + vn

; (1)

the input noise u = {un}Nn=0 and the measurement noise v =

{vn}Nn=0 are assumed to be independent, jointly independent
and independent of x0 ; and x0, un and vn are Gaussian.
Let x0 ∼ N (x̂0,P0), un ∼ N (0,Qn), vn ∼ N (0,Rn),
x0:n = {xi}ni=0 and y0:n = {yi}ni=0. Let also p(xn) and
p(xn|y0:n), say, denote the probability density function (pdf)
(w.r.t. Lebesgue measure) of xn and the pdf of xn conditional
on y0:n, respectively ; the other pdf’s are defined similarly. A
fundamental problem associated to model (1) (the so-called
filtering) consists in estimating, in each time n, the state xn
from the measurements y0:n. The classical solution is given

by the a posteriori mean which minimizes the mean square
error. On the other hand, it happens that the Kalman Filter
(KF) algorithm has been introduced as an indisputable tool
insofar as it allows an exact and recursive computation of
this solution [6] [7]. However, in presence of outliers among
the observations, i.e., if there exist some samples that lie out-
side the data set y0:N [8], the Gaussian assumption under vn
breaks down leading to the degradation of the performance
of KF. This problem originates from the lightweight tails of
the Gaussian distribution due to which the KF considers that
none outlier is present.

To overcome this drawback and improve the robustness
to outliers, the measurement noise should be modelled by a
heavy-tailed distribution. In this perspective, an auxiliary in-
dependent Gamma process w = {wn}n∈IN has been introdu-
ced in [9] (see also [10] and references therein) such that v is
Gaussian conditional on w and

p(vn|wn) ∼ N
(
0,

Rn

wn

)
, p(wn) ∼ Γ(

αn
2
,
βn
2

). (2)

More precisely, the model used in [9] can be considered as
a particular case of (1)-(2), insofar Fn, Hn, Qn and Rn are
constant, and that Qn and Rn are diagonal. Now, it has been
shown that (2) implies that vn is Student’s t-distributed rather
than Gaussian (see e.g. [11]). Moreover, the ratio Rn

wn
des-

cribes the fact that a weight wn is assigned to the variance 1

of each data sample yn, and thus, as we will see below, in-
dicates its contribution in the estimation of xn. On the other
hand, an approximate robust KF-like algorithm has been pro-
posed in [9] based on the Variational Bayesian (VB) approach
[12] [13]. This work was then extended in [14] [15] to the
case in which Qn and Rn are no longer diagonal, and the-
refore, the so-called fixed-interval smoothing problem, which
consists in estimating xn, n = 0, 1, · · · , N from the whole
data set y0:N has been also treated. For this problem an ap-
proximate forward-backward KF-like smoother was derived.

Our contribution is based on the fact that model (1)-(2) is a
conditionally LGHMC in the backward direction, i.e., for de-
creasing values of n. We thus exploit the backward Markovia-
nity of our model in order to address two problems. The first is

1. Note that p(vn|wn) and p(yn|xn, wn) have the same covariance
matrix (or the same variance in the scalar case).
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the so-called backward filtering whose the aim is to estimate
xn from yn:N in the backward direction. The second is the
fixed-interval smoothing for which a new backward-forward
algorithm will be derived, in contrast to [14], who proposes
a reversed algorithm (a forward-backward algorithm). Let us
turn to the content of this paper. In section 2 we introduce the
backward model associated to (1)-(2). We then derive in sec-
tion 3 a robust VB KF-like algorithm allowing the propaga-
tion of p(xn, wn|yn:N ) in the backward direction. A robust
VB KF-like smoother is introduced in section 4 for propa-
gating p(xn, wn|y0:N ) in the forward direction. Some simu-
lations are provided in section 5. We finally emphasize on
positioning our contributions compared to previous works in
section 6.

2. BACKWARD FILTERING IN BACKWARD HMC
WITH HEAVY-TAILED MEASUREMENT NOISE

Let us turn back to model (1)-(2). Let zn = [xTn , wn]T .
Then the following properties hold :

p(zn|zn+1:N ) = p(zn|zn+1), (3)
= p(xn|xn+1)p(wn), (4)

p(yn:N |zn:N ) =

N∏
i=n

p(yi|zi). (5)

In other words, z is a Markov Chain (MC) in the backward
direction, and since z is known only through the observed
process y, (z,y) is a backward HMC model. Now from (3)
and (5) we get

p(zn|zn+1,yn+1:N ) = p(zn|zn+1), (6)
p(yn|zn,yn+1:N ) = p(yn|zn). (7)

As a consequence, the backward filtering pdf p(zn|yn:N ) is
recursively computed in the backward direction by :{
p(zn|yn+1:N ) =

∫
p(zn|zn+1)p(zn+1|yn+1:N)dzn+1

p(zn|yn:N ) ∝ p(yn|zn)p(zn|yn+1:N )
.

(8)
Aside from the linear and Gaussian case for which a backward
KF algorithm has been already introduced [16] [17], the exact
computation of (8) is generally impossible in practice. On the
other hand, one can verify that

p(xn|xn+1) ∼ N (F̃n+1xn+1 + b̃n+1, Q̃n+1), (9)

p(yn|xn, wn) ∼ N (Hnxn,
Rn

wn
), (10)

p(wn) ∼ Γ(
αn
2
,
βn
2

), (11)

with p(xn) ∼ N (x̂n,Pn), F̃n+1 = PnF
T
nP
−1
n+1, b̃n+1 =

(Inx − F̃n+1Fn)x̂n, Q̃n+1 = (Inx − F̃n+1Fn)Pn and Inx

is the nx × nx identity matrix. Now, as far as the estima-
tion of xn is concerned, the development of a backward KF-
like algorithm allowing the computation of the mean and the
covariance matrix of p(xn|wn,yn:N ) is feasible, since, as
we can see, (x,y) is a backward LGHMC conditional on
w. Similarly, since the Gamma distribution belongs to the fa-
mily of conjugate priors, analytic computation of the mean
of p(wn|xn,yn:N ) is tractable. However, our aim is rather
the calculation of parameters of p(xn|yn:N ) and p(wn|yn:N ),
and consequently, it is most convenient to propose tools allo-
wing the suppression of the conditional dependence of xn and
wn. For this purpose, we use VB approach [12] [13] and we
develop a robust backward KF-like algorithm.

3. A ROBUST BACKWARD VB KALMAN FILTER

The aim of VB approach is to approximate the joint pdf
p(xn, wn|yn:N ) by a separable product of marginal densities
q(xn|yn:N )×q(wn|yn:N ) in the sense of the minimization of
the Kullback-Leibler (KL) divergence. Due to the exponential
nature of our problem we get [13] :

q(xn|yn:N )∝exp

(∫
ln(p(zn,yn:N ))q(wn|yn:N )dwn

)
,(12)

q(wn|yn:N )∝exp

(∫
ln(p(zn,yn:N ))q(xn|yn:N )dxn

)
. (13)

It remains to compute (12)-(13) in a recursive way based on
the dynamical structure of model (9)-(11). The proposed al-
gorithm holds in two steps : time-update and measurement-
update.

3.1. Time-update step

We assume that the joint backward filtering pdf is approxi-
mated as p(zn+1|yn+1:N ) ≈ q(xn+1|yn+1:N )q(wn+1|yn+1:N )
and we wish to compute an approximation

p(zn|yn+1:N ) ≈ q(xn|yn+1:N )q(wn|yn+1:N ), (14)

of the so-called backward prediction pdf. By using (4) in the
1st eq. of (8) we get{
q(xn|yn+1:N) =

∫
p(xn|xn+1)q(xn+1|yn+1:N)dxn+1

q(wn|yn+1:N )=p(wn)
(15)

Equalities (15) show that the separability of the joint filtering
pdf leads to that of the prediction pdf. On the other hand, com-
puting p(zn|yn+1:N ) by the 1st eq. of (8) amounts to com-
pute the marginal pdf q(xn|yn+1:N ) by (15). From now on
we set ŵn|i:j = IEq(wn|yi:j)[wn], x̂n|i:j = IEq(xn|yi:j)[xn]

and Pn|i:j = IEq(xn|yi:j)[(xn− x̂n|i:j)(xn− x̂n|i:j)
T ], for all

n, i, j with 0 ≤ n ≤ N and 0 ≤ i ≤ j ≤ N .
One can show that the 1st eq. of (15) reduces to the time-

update step of the backward KF [16] [17] :

x̂n|n+1:N = F̃n+1x̂n+1|n+1:N + b̃n+1, (16)

Pn|n+1:N = F̃n+1Pn+1|n+1:N F̃Tn+1 + Q̃n+1. (17)
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3.2. Measurement-update step

We now address the computation of (12) and (13). We
start by computing p(zn,yn:N ). From (7), (14) and 2nd eq.
of (15) the following factorization hold :

p(zn,yn:N )≈C1p(yn|xn, wn)q(xn|yn+1:N )p(wn),(18)

C1 is independent of xn and wn. Furthermore, by injecting
(10) and (11) in (18) we get

ln(p(zn,yn:N )) ≈ C2 −
1

2
[(−ny − αn + 2) ln(wn) (19)

+wn(βn+||yn−Hnxn||2R−1
n

)+||xn−x̂n|n+1:N ||2P−1
n|n+1:N

]

with C2 is independent of xn and wn, and for some vector v
and positive definite matrix M we set ||v||2M

def
= vTMv.

Now, as far as the computation of q(xn|yn:N ) is concer-
ned, by injecting (19) and (11) in (12) one can show that
q(xn|yn:N ) is Gaussian with

Pn|n:N=
[
P−1n|n+1:N + ŵn|n:NHT

nR
−1
n Hn

]−1
(20)

x̂n|n:N=Pn|n:N

[
P−1n|n+1:Nx̂n|n+1:N+ŵn|n:NH

T
nR
−1
n yn

]
.(21)

Let note that (20)-(21) have the form of the measurement-
update step in information form, of the backward KF with

Rn

ŵn|n:N
as measurement-noise covariance matrix.

On the other hand, following (19) the computation of (13)
leads to a Gamma pdf q(wn|yn:N ) ∼ Γ( α̃n

2 ,
β̃n

2 ) with

α̃n=αn+ny (22)

β̃n=βn+||yn−Hnx̂n|n:N ||2R−1
n

+Tr
[
HT
nR
−1
n HnPn|n:N

]
,(23)

whence the posterior mean ŵn|n:N = α̃n

β̃n
.

However, the quantities of interest (x̂n|n:N ,Pn|n:N ) and
β̃n (then ŵ|n:N ) are coupled, which makes impossible the
exact resolution of (20), (21) and (23). A classical solution
may be used to avoid this drawback, consists in fixed-point
iteration such that (x̂n|n:N ,Pn|n:N ) are computed while kee-
ping β̃n fixed and vice versa. This algorithm, which we shall
call Robust Backward VB Kalman Filter (RB-VBKF), is sum-
marized in the following proposition.

Proposition 1 (RB-VBKF algorithm) Assume that we are
given (9)-(11). Then

Time-update step. Approximate the mean of p(xn|yn+1:N )
by x̂n|n+1:N given in (16) and its covariance matrix by
Pn|n+1:N given in (17).

Measurement-update step. We proceed with iterations.

B Initialization. Let ŵ(0)
n|n:N = αn

βn
.

B For i = 0, 1, · · · , I � 1,

• compute x̂
(i)
n|n:N and P

(i)
n|n:N by (21) and (20) respecti-

vely once ŵn|n:N is replaced by ŵ(i)
n|n:N ;

• compute β̃(i+1)
n (then ŵ(i+1)

n|n:N = α̃n

β̃
(i+1)
n

) by (23) with

the use of x̂(i)
n|n:N and P

(i)
n|n:N .

Then, the mean and the covariance matrix of p(xn|yn:N ) are
approximated by x̂

(I)
n|n:N and P

(I)
n|n:N respectively ; the mean

of p(wn|yn:N ) is approximated by ŵ(I)
n|n:N .

4. A ROBUST BACKWARD-FORWARD VB KALMAN
FIXED-INTERVAL SMOOTHER

Based on the same idea as above, we use VB approach
to propagate an approximation of p(zn|y0:N ) in the forward
direction. Let p(z0:N |y0:N ) ≈ q(x0:N |y0:N )q(w0:N |y0:N ).
Then, q(x0:N |y0:N ) and q(w0:N |y0:N ) can be expressed by
(12) and (13) respectively, once xn (resp. wn) is replaced by
x0:N (resp. w0:N ). These pdf’s involve p(z0:N ,y0:N ), which,
in turn, following (4)-(5), can be factorized as

p(z0:N ,y0:N )=p(xN )

N−1∏
n=0

p(xn|xn+1)

N∏
n=0

p(yn|zn)p(wn).

(24)
Such factorization is, indeed, a key computational tool for
the development of recursive algorithms. Now, one can verify
that p(w0:N |y0:N ) =

∏N
n=0 p(wn|y0:N ), and thus for each

n = 0, · · · , N , p(wn|y0:N ) ∼ Γ(αn

2 ,
βn

2 ) with αn and βn are
given by (22) and (23) respectively, once (x̂n|n:N ,Pn|n:N )
are replaced by (x̂n|0:N ,Pn|0:N ). Finally, as above, a fixed
point iteration procedure have to be performed for updating
βn for fixed (x̂n|0:N ,Pn|0:N ) and vice versa.

Similarly, by injecting (24) in (12), once xn (resp. wn) is
replaced by x0:N (resp. w0:N ), and using (9)-(11), one can
see that the marginal smoothing pdf q(xn|y0:N ) is Gaussian
whose parameters are propagated in the forward direction as :

Kn|0:N=Pn|n:N F̃nP
−1
n−1|n:N (25)

x̂n|0:N=x̂n|n:N + Kn|0:N [x̂n−1|0:N − x̂n−1|n:N ] (26)

Pn|0:N=Pn|n:N−Kn|0:N[Pn−1|n:N−Pn−1|0:N ]KT
n|0:N .(27)

Let note that (25)-(27) are of the same form as the forward
step of the backward-forward fixed-interval smoother pre-
viously introduced in the backward LGHMC framework [17]
[16]. Furthermore, (25)-(27) involve (x̂n|n:N ,Pn|n:N ), such
parameters have been already computed in the backward
direction by RB-VBKF algorithm (Prop. 1). The proposed
algorithm, which we shall call Robust Backward-Forward
VB Kalman Smoother (RBF-VBKS), is summarized in the
following proposition.

Proposition 2 (RBF-VBKS algorithm) Assume that we are
given (9)-(11). Then for each iteration i = 0, · · · , I ,
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Backward step. For n = N, · · · , 0, compute (x̂(i)
n|n:N , P(i)

n|n:N )

and (x̂(i)
n|n+1:N , P(i)

n|n+1:N ) by using RB-VBKF formulas.

Forward step. For n = 0, · · · , N , compute (x̂(i)
n|0:N , P(i)

n|0:N )

by using (25)-(27), then β
(i)

n by (23) once (x̂n|n:N ,Pn|n:N )

are replaced by (x̂(i)
n|0:N ,P

(i)
n|0:N ).

Finally, the mean and the covariance matrix of p(xn|y0:N )

are approximated by x̂
(I)
n|0:N and P

(I)
n|0:N respectively ; the

mean of p(wn|y0:N ) is approximated by ŵ(I)
n|0:N =

αn+ny

β
(I)
n

.

5. NUMERICAL EXAMPLE

Let us finally provide a numerical example. We consi-

der a model with fixed parameters : F =

[
0.9 0.01
0.17 0.5

]
,

H = [0.45 0.6], Q = 0.1 × I2 and R = 0.02. Let ge-
nerate N = 200 observations containing outliers. Outliers
are generated in such a way that the weight wn = 1 (then
rn = R

wn
= 0.02) with 70% probability, and wn = 0.01 (then

rn = 2) with 30% probability. Fig. 1(a) shows that the ge-
nerated data is effectively infested by outliers. We aim to as-
sess the performance of the proposed algorithms RB-VBKF
and RBF-VBKS, as well as the standard Backward KF (BKF)
which uses R rather than R

wn
. The proposed algorithms use

αn = βn = 4, ∀n, and perform with I = 100 iterations.
For this purpose, we first estimate the unknown states xn

and weights wn, ∀n ; the observed data samples yn are then
reconstructed based on these estimates. Results are plotted
in Fig. 1(b). As expected, BKF is very sensitive to outliers,
while RB-VBKF and RBF-VBKS are more robust to outliers.
Fig. 2 shows the theoretic mean square error (MSE) of the
estimation of xn, averaged on 10 independent realizations,
i.e., the trace of Pn|n:N when filtering is performed or that
of Pn|0:N when smoothing is considered. As expected, RBF-
VBKS which uses the whole data set outperforms RB-VBKF,
which, in turn, outperforms BKF.

6. RELATION TO PREVIOUS WORK

Our work focuses on processing sequential data corrup-
ted with outliers. Recent studies in [9] [10] [14] [15] have
been done in linear HMC with heavy-tailed measurement
noise framework, and thereby proposed approximate robust
Kalman-like forward filtering and forward-backward fixed
interval smoothing algorithms based on VB approach. In our
work we exploit the backward Markovianity of the model in
order to address two new problems, such as, the backward
filtering and the backward-forward fixed-interval smoothing.
For this purpose, new approximate robust Kalman-like algo-
rithms have been developed. On the other hand, the use of the
backward property of dynamical models is not entirely new,
and as such, a wide range of KF-like algorithms have been

Fig. 1. Observed data and its reconstruction by RBF-VBKS, RB-
VBKF and BKF.

Fig. 2. MSE of the tracking of xn by RBF-VBKS, RB-VBKF and
BKF. Sub-Fig (b) is a zoom of (a).

introduced in the LGHMC framework [16] [17]. However, in
our best knowledge, the use of backward models in presence
of outliers context is original.

7. CONCLUSION

In this paper we have addressed the backward filtering
problem and the backward-forward fixed-interval smoothing
problem in situations for which the observations are corrup-
ted with outliers. We exploited the backward Markovianity of
the model in order to derive robust Kalman-like algorithms
based on the variational Bayesian approach. The potential of
the proposed algorithms for processing sequential data cor-
rupted with outliers, in particular to outperform the classical
Kalman filter, has been shown through simulations.
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