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ABSTRACT

We develop a general robust fundamental frequency estima-
tor that allows for non-parametric inharmonicities in the ob-
served signal. To this end, we incorporate the recently devel-
oped multi-dimensional covariance fitting approach by allow-
ing the Fourier vector corresponding to each perturbed har-
monic to lie within a small uncertainty hypersphere centered
around its strictly harmonic counterpart. Within these hyper-
spheres, we find the best perturbed vectors fitting the covari-
ance of the observed data. The proposed approach provides
the estimate of the fundamental frequency in two steps, and,
unlike other recent methods, involves only a single 1-D search
over a range of candidate fundamental frequencies. The pro-
posed algorithm is numerically shown to outperform the cur-
rent competitors under a variety of practical conditions, in-
cluding various degrees of inharmonicity and different levels
of noise.

Index Terms— Fundamental frequency, inharmonicity,
robust estimator, multi-dimensional covariance fitting.

1. INTRODUCTION

The estimation of the fundamental frequency, or pitch, of a
set of harmonically related sinusoids is an integral part of
many signal processing algorithms. While these algorithms
most commonly find application in speech and audio signal
processing, they can, in principle, be applied to harmonically
related signals appearing in other fields, such as electrocar-
diography (ECG) [1]. Most developed estimators assume that
the harmonics are exact integer multiples of the fundamental
frequency (see, e.g., [1–3] and references therein). However,
this is not always the case, and the deviation of the higher
frequencies from exact integer multiples of the fundamental
frequency, a phenomenon called inharmonicity, is often ob-
served in real-world signals. For instance, it is well known
that inharmonicity arises in piano tones due to the stiffness in
the piano strings [4]. Inharmonicity has also been considered
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in the modelling and coding of speech signals, and several
different models of inharmonicity have been developed [5,6],
as, if not properly compensated for, the frequency deviations
will lead to poor amplitude and pitch estimates [7]. To alle-
viate this problem, several robust fundamental frequency es-
timation algorithms have been proposed in the recent litera-
ture, allowing for inharmonicity in the observed signal. Most
of these algorithms consider the scenario of stiff-stringed in-
struments where deviations from exact integer multiples of
the fundamental frequency depend functionally on a single
unknown stiffness parameter [8–11]. However, as discussed
in [1, 7], and also elaborated upon below, a more general
model that allows for random perturbations in the harmon-
ics would lead to an estimator that covers a wider range of
problems. Existing solutions, such as the maximum a posteri-
ori (MAP) and subspace estimators presented in [1, 7], suffer
from requiring exhaustive grid searches, such that the esti-
mates are formed based on searches close to the expected un-
perturbed harmonics. Clearly, such combinatorial grid search
approaches would increasingly become computationally in-
efficient with increasing number of harmonics, or for sig-
nals containing multiple sources. The main objective of this
work is to develop a general robust fundamental frequency
estimator that does not require searches over individual per-
turbed harmonics. In this regard, we incorporate the recently
developed multi-dimensional covariance-fitting (MDCF) ap-
proach from the beamforming literature [12] into the robust
pitch estimation problem by allowing the Fourier vector cor-
responding to each perturbed harmonic to lie within a small
uncertainty hypersphere centered around its strictly harmonic
counterpart. Within these hyperspheres, we find the best per-
turbed vectors fitting the covariance of the observed data. The
proposed approach is more general than other recent robust
methods such as [8–11] that deal only with simple parametric
inharmonicity of the form in [4], and it avoids the exhaustive
search approach of [1, 7]. Finally, we note that the proposed
approach is different from several other robust pitch estima-
tors [13–16] that are robust to different kinds of noise or to
missing data. In contrast, our work focuses on robustness to
inharmonicity.
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2. SIGNAL MODEL AND OTHER ESTIMATORS

Consider a harmonic signal with the fundamental frequency
ω0 > 0, corrupted by an additive noise [1]

x(n) =

L
∑

l=1

αle
inωl + e(n) (1)

where n = 0, . . . , N − 1, αl = |αl|ei∠αl denotes the com-
plex amplitude of the lth harmonic, and e(n) is a zero-mean
white complex circularly symmetric Gaussian noise process
with unknown variance σ2

e . The harmonic frequencies, ωl,
are often formed as ωl = ω0l, where ω0 denotes the pitch
frequency, but may, alternatively, using a model capturing the
string stiffness also be modelled as

ωl(ω0, B) = lω0

√

1 + l2B (2)

where B ≪ 1 is an unknown positive stiffness parameter.
The main problem with such parametric models is that they
are instrument dependent and one may have to consider many
such models to develop an estimator that can be applicable
to a wide range of pitch estimations problems. Additionally,
in many audio signal processing problems, the inharmonici-
ties may not be so well-behaved. To avoid such limitations,
we will here consider the more general model used in [1], ex-
tending (1) to allow small independent perturbations in the
harmonics, such that

x(n) =

L
∑

l=1

αle
iωl(ω0,∆l)n + e(n) (3)

where ωl(ω0,∆l) = ω0l + ∆l, with ∆l representing a per-
turbation of the l-th harmonic. We assume that the order L
is known, or has been estimated using one of the order es-
timation algorithms available in literature [1]. We shall fur-
ther assume, without loss of generality, that the perturbations
are normally distributed zero-mean random variables with un-
known but small variances, σ2

∆l
. Among the pitch estima-

tion algorithms available in literature, the maximum likeli-
hood (ML) estimator offers a very powerful tool for estimat-
ing the fundamental frequency of a perfectly harmonic signal.
It is known to be computationally efficient, and reduces to the
optimal nonlinear least squares (NLS) estimator in case of
white noise [1]. A robust version of the ML estimator, that
allows for parametric inharmonicity of the form (2) has been
presented in [1]. The algorithm is, however, computationally
inefficient as it requires a 2-D search over ω0 and B. Two
of the relatively recent approaches that cover the general in-
harmonicity model in (3) are the MAP method of [1] and the
subspace-based method of [7]. The MAP approach estimates
the fundamental frequency and the perturbations by maximiz-
ing the posterior likelihood of observing the measured data
under an assumed prior on the distribution of the perturba-

tions. The subspace-based method [7], on the other hand, ex-
ploits a MUSIC-like approach to estimate the perturbed fre-
quencies. However, both methods form the estimates based
on searches over the parameters (ω0, {∆l}).

3. PROPOSED ROBUST COVARIANCE-FITTING
PITCH ESTIMATOR

Let

x(n) =
[

x(n) x(n− 1) . . . x(n−M + 1)
]T

(4)

A∆ =
[

aM (ω0 +∆1) . . . aM (ω0L+∆L)
]

(5)

where (·)T denotes the transpose, for M < N , with

aM (ω) =
[

1 e−iω . . . e−iω(M−1)
]T

(6)

Note that A∆ is full-rank if ω0l+∆l 6= ω0m+∆m, ∀ l 6= m.
The covariance matrix of (3) can then be written as

R = E
{

x(n)x∗(n)
}

= A∆PA
∗
∆ + σ2

eI (7)

where (·)∗ represents the Hermitian transpose, and

P = diag
{[

|α1|2 . . . |αL|2
]}

(8)

In order to utilize the powerful optimal filtering methods dis-
cussed in [1] without resorting to searches over the perturba-
tions {∆l}, we here propose to allow each perturbed Fourier
vector aM (ω0l + ∆l) to lie within a small uncertainty hy-
persphere centered around its strictly harmonic counterpart
aM (ω0l). Defining the nominal Fourier matrix

A =
[

aM (ω0) . . . aM (ω0L)
]

(9)

the set of constraints on the L Fourier vectors may be written
compactly as

‖(A∆ −A)el‖2 ≤ ǫl, l = 1, . . . , L (10)

where ǫl is a user parameter reflecting on the expected level
of inharmonicity, and where el is the l-th column vector of
an L × L identity matrix. Further, noting from (7) that any
selection of {∆l}, α, and σ2

e must satisfy

A∆PA
∗
∆ + σ2

eI � R̂ (11)

whereA � B denotes thatB−A is positive semidefinite, and
where R̂ = 1

N−M+1

∑N−M

n=0 x(n)x∗(n) is the sample co-
variance matrix, one may estimate the perturbed Fourier vec-
tors as the ones that maximally explain the total observed sig-
nal power, log det(R), while satisfying the constraints (10)
and (11). To this end, we employ the MDCF concept [12], to
recast the problem as

max
A∆,P,σ2

e
≥0

log det(A∆PA
∗
∆ + σ2

eI) (12)

s.t. A∆PA
∗
∆ + σ2

eI � R̂

‖(A∆ −A)el‖2 ≤ ǫl, l = 1, . . . , L

P = P⊙ IL � 0
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where ⊙ is the element-wise matrix product, and the last
constraint ensures that, in accordance with the definition (8),
P is positive semidefinite and diagonal. As shown in [12],
(12) may not be amenable to a standard numerical solution,
and one may instead use semidefinite programming (SDP) to
solve a local convex approximation of (12) as

max
Ă∆,σ2

e
≥0

2R
{

tr{Ă∗
R

−1
0 Ă∆}

}

+ tr{R−1
0 }σ2

e (13)

s.t. Ă∆Ă
∗
∆ + σ2

eI � R̂

R{(Ael)
∗
Ă∆el} ≥ νl‖Ăel‖2; l = 1, . . . , L

I{(Ael)
∗
Ă∆el} = 0; l = 1, . . . , L

where R{·} and I{·} denote the real and imaginary parts of
a complex number, respectively, νl =

√

‖Ael‖22 − ǫ2l , and
R0 = ĂĂ

∗ + σ2
0I, with

Ă = AP
1

2

0 (14)

where P0 denotes an initial estimate of P obtained through
any suitable spectral estimator, and σ2

0 is formed by averag-
ing the M − L smallest eigenvalues of R̂. There are several
reasons why this formulation cannot be directly used to esti-
mate the perturbed frequencies {ωl}. Firstly, as can be seen
from (6), the true Fourier vectors must satisfy aM (ω)e−iω =
aM (ω), where aM (ω) and aM (ω) are formed by taking, re-
spectively, the first M − 1 and the last M − 1 elements of
the vector aM (ω). However, the formulation in (13) imposes
no such constraint on the structure of Ă∆. Secondly, we note
that, by virtue of (14), an estimated Ă∆ would include es-
timates of the amplitudes of the harmonics. Thus, the cost
function of (13) is not suitable for a grid search over the fun-
damental frequency as it may wrongly compensate for the fre-
quency perturbations by adjusting the estimates of the ampli-
tudes and the noise variance σ2

e . To address these issues for
the robust pitch estimation problem, we propose the following
two-step approach that can be applied over a very coarse grid
of fundamental frequencies. We term the proposed two-step
approach the robust covariance-fitting pitch (RCP) estimator.

3.1. Step one: coarse estimates

The main objective of the first step is to obtain an initial esti-
mate of the perturbed matrix A∆. This estimate will then be
used as the assumed matrix in the second step, and is formed
using a single 1-D grid search over a range of fundamental
frequencies. It is worth noting both that the search grid can
be chosen to be rather coarse, and that the estimate may be
formed without any search over the individual perturbations.
The estimate is formed as:

(a). Form a grid of appropriate size, say K , over the ex-
pected range of fundamental frequencies, and choose a fre-
quency point from the grid, say ωk

0 , and, assuming this to be
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Fig. 1. RMSE of the fundamental frequency estimates against the
level of inharmonicity, for ω0 = 0.2137, at SNR levels of (a) 5 dB
and (b) 30 dB.

the fundamental frequency, form the matrix A using (9), and
P0 by computing the periodogram estimates at ωk

0 and its per-
fect harmonics. Using the evaluated A and P0, solve the SDP
in (13) to get an initial estimate of Ă∆.

(b). In line with the discussion under (14), the perturbed
harmonics are extracted from the estimated Ă∆ by impos-
ing the suggested structural constraint on its columns. More
specifically, denoting the l-th column of the estimated Ă∆ as
bl, and noting that, to be a true Fourier vector for the l-th
harmonic, it must satisfy blγl = bl, where γl = e−iωl , and
where bl and bl are defined similar to aM (ω) and aM (ω),
respectively, form an estimate of the l-th harmonic frequency
as ω̂l = −I{ln(γ̂l)}, with

γ̂l =
b
∗

l bl

‖bl‖22
(15)

(c). Form an improved estimate of A∆, say Â∆, by sub-
stituting the estimates {ω̂l} in (5). With the estimate Â∆ now
available, the problem reduces to a standard pitch estimation
problem. Therefore, we propose to utilize the cost function

gk , tr
[

(

Â
∗
∆R̂

−1
Â∆

)−1
]

(16)

which represents the total output power of a set of L Capon
filters, and is maximized at the true perturbed frequencies (for
details, see, e.g., [1, 17]).

(d). Repeat (a)-(c) for the K points in the grid, and choose
{ω̂max

l } as the L estimates where {gk}Kk=1 is maximized.

3.2. Step two: refined estimates

While it is possible to use {ω̂max
l }, obtained in the previous

step, one may refine the estimates of the perturbed frequen-
cies further by solving (13) with the following improved ini-
tializations. Firstly, in place of A, Âmax

∆ is used as the as-
sumed Fourier matrix, where Âmax

∆ is formed by substituting
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Fig. 2. RMSE of the fundamental frequency estimates against SNR,
for ω0 = 0.2137 using σ∆ equal to (a) ω0/10, and (b) ω0/10

{ω̂max
l } in (5). Secondly, to give better initial estimates of

the amplitudes of the harmonics, P0 should be formed by
computing the periodogram amplitudes at {ω̂max

l }. These
two modifications together assure a better initialization for the
SDP problem in (13), leading therefore to more accurate fre-
quency estimates, which can be formed as in (b) of the first
step.

3.3. Selection of ǫl

Noting that the left side of (10) may be written as the sum-
mation,

∑M

m=1

√

2(1− cos(∆lm)), one may give a rough
range for the selection of ǫl, such that it does not violate (10),
as 0 ≤ ǫl ≤ 2

√
M . Practical experience shows that in order

to restrict ∆l to be very small (which is typically the case),
one should choose ǫl ≤

√
M/3. Secondly, one should use a

smaller ǫl in the second step of RCP as compared to the value
used in the first step. This is because Âmax

∆ is expected to be
closer to the true value of A∆, as compared to A (which is
used as the assumed matrix in the first step).

4. SIMULATIONS AND RESULTS

We proceed to numerically evaluate the performance of the
proposed RCP estimator, comparing to the MLE [1] and the
robust MAP (R-MAP) [7] estimators. The results are obtained
through a number of experiments based on Monte Carlo sim-
ulations using synthetic signals. In each case, the synthetic
signal was generated using (3), with L = 4 harmonics having
unit amplitudes and uniformly distributed phases that are ran-
domized in each Monte Carlo run. The experiments were re-
peated for several different fundamental frequencies, and for
five different signal-to-noise ratio (SNR) levels from 5 − 30
dB, where the SNR is defined as 10 log10(tr(P)/σ2

e). All al-
gorithms were tested at different levels of inharmonicity by
increasing the standard deviation of the perturbations, σ∆,
from 0 to ω0/10, where a variance of 0 indicates a perfectly
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Fig. 3. RMSE at ω0 = 0.1425, 0.2137, 0.3206, for SNR = 30 dB,
using σ∆ = ω0/10.

harmonic signal. A total of J = 150 Monte Carlo simula-
tions were used in each experiment to evaluate the root mean
square error (RMSE), defined for the fundamental frequency

estimates as, RMSE =
√

1

J

∑J

j=1
(ω̂0,j − ω0)2, where ω0 and

ω̂0,j represent the true fundamental frequency and the esti-
mated fundamental frequency in the j-th Monte Carlo run,
respectively. A data length of N = 200 samples was used,
while the sub-vector length for RCP was set to M = 50,
which is in accordance with the limit, M ≤ N/2, suggested
in filtering literature (see, e.g., [1] and [17]). Typical results,
comparing the proposed RCP estimator to the standard MLE
and the R-MAP estimators, are shown in Figures 1-3. Follow-
ing the guidelines in Section 3.3, all the results were obtained
with the uncertainty parameter ǫl set to 4 for the first step and
to 2 for the second step of RCP. The fundamental frequency
search grid for MLE and R-MAP consisted of 300 equally-
spaced points in the range [0.05, 0.5], whereas for the pro-
posed RCP estimator, the grid consisted of only 30 equally-
spaced points in the same range. Figure 1 shows the RMSE
of the fundamental frequency estimates against the level of
inharmonicity for ω0 = 0.2137 at SNR levels of 5 and 30
dB. As is clear from the figures, the proposed RCP estima-
tor performs better at both low SNR and high SNR levels.
As expected, the MLE method, not allowing for inharmonic-
ity, suffers heavily with increase in inharmonicity. Figure 2
shows the RMSE against SNR for ω0 = 0.2137 for σ∆ equal
to ω0/14 and ω0/10. We see that while the performance of
all the estimators degrades slightly at lower SNRs, the RCP
estimator provides more accurate estimates at all levels. Fi-
nally, Figure 3 shows the RMSE at three different fundamen-
tal frequencies ω0 = 0.1425, 0.2137, and 0.3206, at SNR =
30 dB, and using σ∆ = ω0/10. We remark that the increase
in the RMSE of MLE at the higher frequencies is because of
a higher simulated inharmonicity at these frequencies. While
both R-MAP and RCP show robustness to the inharmonicity,
the proposed approach clearly provides more accurate esti-
mates.

5502



5. REFERENCES

[1] M. Christensen and A. Jakobsson, Multi-Pitch Estima-
tion, Morgan & Claypool, 2009.

[2] H. Kameoka, Statistical Approach to Multipitch Analy-
sis, Ph.D. thesis, University of Tokyo, 2007.

[3] W. Hess, “Pitch and voicing determination,” Advances
in Speech Signal Processing, pp. 3–48, 1992.

[4] H. Fletcher, “Normal vibration frequencies of stiff piano
string,” Journal of the Acoustical Society of America,
vol. 36, no. 1, 1962.

[5] T. D. Rossing, The Science of Sound, Addison-Wesley
Publishing Co., 1990.

[6] E. B. George and M. J. T. Smith, “Speech anal-
ysis/synthesis and modification using an analysis-by-
synthesis/overlap-add sinusoidal model,” IEEE Trans-
actions on Speech and Audio Processing, vol. 5, no. 5,
pp. 389 –406, Sep 1997.

[7] M. G. Christensen, P. Vera-Candeas, S. D. Somasun-
daram, and A. Jakobsson, “Robust Subspace-based Fun-
damental Frequency Estimation,” in IEEE International
Conference on Acoustics, Speech and Signal Process-
ing, Las Vegas, March 30-April 4, 2008.

[8] I. Barbancho, L. J. Tardon, S. Sammartino, and A. M.
Barbancho, “Inharmonicity-based method for the au-
tomatic generation of guitar tablature,” IEEE Transac-
tions on Audio, Speech, and Language Processing, vol.
20, no. 6, pp. 1857 –1868, Aug. 2012.

[9] E. Benetos and S. Dixon, “Joint multi-pitch detection
using harmonic envelope estimation for polyphonic mu-
sic transcription,” IEEE Journal of Selected Topics in
Signal Processing, vol. 5, no. 6, pp. 1111 –1123, Oct.
2011.

[10] J. X. Zhang, M. G. Christensen, S. H. Jensen, and
M. Moonen, “A robust and computationally effi-
cient subspace-based fundamental frequency estimator,”
IEEE Transactions on Audio, Speech, and Language
Processing, vol. 18, no. 3, pp. 487 –497, March 2010.

[11] V. Emiya, R. Badeau, and B. David, “Multipitch estima-
tion of piano sounds using a new probabilistic spectral
smoothness principle,” IEEE Transactions on Acous-
tics, Speech, and Signal Processing, vol. 18, no. 6, pp.
1643–1654, August 2010.

[12] M. Rubsamen and A. B. Gershman, “Robust adap-
tive beamforming using multidimensional covariance
fitting,” IEEE Transactions on Signal Processing, vol.
60, no. 2, pp. 740 –753, Feb. 2012.

[13] F. Huang and T. Lee, “Pitch estimation in noisy speech
using accumulated peak spectrum and sparse estimation
technique,” IEEE Transactions on Audio, Speech, and
Language Processing, vol. 21, no. 1, pp. 99 –109, Jan.
2013.

[14] S. Gonzalez and M. Brookes, “A pitch estimation filter
robust to high levels of noise (PEFAC),” in 19th Euro-
pean Signal Processing Conference (EUSIPCO), 2011.

[15] J. A. Morales-Cordovilla, Ning Ma, V. Sanchez, J. L.
Carmona, A. M. Peinado, and J. Barker, “A pitch based
noise estimation technique for robust speech recognition
with missing data,” in Acoustics, Speech and Signal Pro-
cessing (ICASSP), 2011 IEEE International Conference
on, May 2011, pp. 4808 –4811.

[16] J. O. Hong and P. J. Wolfe, “Robust and efficient pitch
estimation using an iterative ARMA technique,” in IN-
TERSPEECH 2010, 11th Annual Conference of the In-
ternational Speech Communication Association, 2010.

[17] P. Stoica and R. Moses, Spectral Analysis of Signals,
Prentice Hall, Upper Saddle River, N.J., 2005.

5503


