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ABSTRACT

Semi-definite relaxation (SDR) is a popular technique for
Multi-Input Multi-Output (MIMO) detection. For Binary
Phase-Shift Keying (BPSK) and Quadratic Phase-Shift Key-
ing (QPSK), it has been found that SDR can provide a near-
optimal Bit Error rate (BER) performance in a Gaussian chan-
nel. However if the noise in the channel deviates from the
Gaussian model, as it does in many real wireless channels,
BER performance drops considerably. In this paper we show
that SDR can be applied for detection in a non-Gaussian chan-
nel using Huber’s M-estimation method for robust regression.

1. INTRODUCTION

In recent years, SDR of the Gaussian Maximum Likeli-
hood (ML) function was used extensively in detection of
integer symbols transmitted over Additive White Gaussian
Noise (AWGN) MIMO channels [1, 2, 3]. For BPSK it was
shown by simulations that SDR gives near-optimal results [4]
and later was proven to achieve maximal possible diversity
[3].The SDR technique was also extended to higher order
Quadrature Amplitude Modulation (QAM) [5, 6].

However, the above is true for AWGN channels only. In
many physical channels, mainly due to impulsive nature phe-
nomenons, the ambient noise tends to be non-Gaussian. This
was experimentally shown in urban and indoor radio chan-
nels [7, 8] as well as in underwater acoustic channels [9]. In
such channels performance of the Gaussian ML detector, and
with it the SDR of it, degrades considerably even when the
deviation is relatively small [10].

A technique based on M-estimation method for robust
statistics (i.e. Huber’s estimator) is presented in [11] which
guarantees that for small unknown deviations from the Gaus-
sian distribution it is the best estimator (in the minimax sense)
that can be achieved [12] and gives a robust estimator for
non-Gaussian channels. Unfortunately, in the case of inte-
ger constrained MIMO the complexity of this technique be-
comes Non-Polynomial (NP) in the general case. We present
several standard methods with polynomial complexity which
relax the above and suggest a further improvement by using
Semi-definite Relaxed Huber (SDRH) detector. We also show

that it is a tighter relaxation of the NP problem in binary con-
strained MIMO compared to other standard relaxation tech-
niques. In this paper we consider only the case where the
transmitted data and channel have real values, but the analy-
sis can be easily extended to the complex case [13].

This paper is organized as follows. Section 2 presents the
BPSK MIMO system model with non-Gaussian channel noise
and the Huber’s robust detector. In Section 3 we present sev-
eral standard relaxations and derive the SDRH Detector using
an alternative form of the Huber’s robust detector. In sec-
tion 4 we prove that in terms of objective value the SDRH is
tighter than all the other presented detectors. Section 5 pro-
vides simulation results demonstrating the performance gain
of the SDRH over the other detectors in a non-Gaussian chan-
nel.

The following notation is used. The sets Rnand Rn×m de-
note the set of length n vectors and the set of size n × m
matrices. the operator ‖·‖p denotes the Lp norm. The super-
script XT and X−1 denotes the transpose and inverse opera-
tions. The subscripts xi and Xi,j denotes the i’s element in
the vectorx and the element in row i and column j in matrix
X . The vectors 1 and 0 are the all ones and all zeros vectors.
The vector diag (X) contains the elements of the main diag-
onal of X . We donate the zero mean multivariate Gaussian
distribution by N (0, Σ) where Σ is the covariance matrix.
The set{. . .}ndenotes the set of length n vectors where each
element belongs to {. . .}. The operator V ar (G) is the vari-
ance of distribution G. The operators ≤ when applied to vec-
tors and� are an inequality in each element and an inequality
in the sense of positive semi-definiteness.

2. PROBLEM FORMULATION

We consider the detection of binary symbols transmitted over
an n×m MIMO channel modeled according to

y = Hs+ v, (1)

where s ∈ Bm , {±1}m is the binary transmitted message,
H ∈ Rn×m is the channel matrix (which is assumed to be
known to the receiver), y ∈ Rn is the received message, v ∈
Rn is the additive noise which is white but non-Gaussian and
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m ≤ n. In this paper we restrict ourselves to ε-contaminated
Gaussian models so that the distribution of each noise element
vi is given by

Pi = (1− ε)N
(
0, σ2

)
+ εGi (2)

where 0 < ε < 1 is fixed, σ2 is the variance of the nominal
Gaussian distribution and Gi are unknown symmetric distri-
butions which usually represents impulsive phenomenons and
outliers ( V ar (Gi)� σ2 ).

The ML estimate for s cannot be formulated directly as Gi’s
are not known. However, in [11] it is shown that a robust esti-
mation can be achieved using Huber’s minimax M-estimator
with the following decorrelator

ŝBCH =
argmin

s

∑n
i=1 ρh (yi −Hi,→s)

s.t. s ∈ Bm
(3)

where Hi,→ is the ith row in H and ρh is the Huber penalty
function

ρh (x) =

{
x2 |x| ≤ h
2h |x| − h2 |x| > h

(4)

where the parameter h is calculated from the following for-
mula

σ

h
φ

(
h

σ

)
−Q

(
h

σ

)
=

ε

2 (1− ε)
(5)

where φ (x) = 1√
2π
e−

x2

2 and Q (t) = 1√
2π

´∞
t
e−

x2

2 dx.
But, in the case of binary symbol transmission, the problem

in (3) have NP complexity in the general case and cannot be
solved efficiently for large MIMO.

3. THE SDRH DETECTOR

In this section we present several standard methods to approx-
imate (3) and suggest a tighter approximation which can still
be calculated efficiently.

One method to approximate (3) is to ignore the constraints
on x which leaves us with the non-constrained Huber (NCH)
detector, as in [11],

s̃ = argmin
s

fNCH ,
n∑
i=1

ρh (yi −Hi,→s) . (6)

It can be calculated efficiently, using standard methods of
convex optimization [14]. Then round the result i.e.

ŝNCH = sign (s̃) (7)

to fit it into the original constrains. However, this relaxation
is too loose and does not give optimal results. A tighter result
can be achieved by the Hypercube constrained Huber (HCH)

detector which is computed by solving (6) with the constraint
s ∈ [−1, 1]m giving

s̃ =
argmin

s
fHCH ,

∑n
i=1 ρh (yi −Hi,→s)

s.t. s ∈ [−1, 1]m
(8)

and ŝHCH = sign (s̃). But the it is still too loose and does
not give much improvement over the unconstrained case. We
suggest a tighter relaxation based on an SDR technique which
shows a major improvement over the previos two relaxations.

SDR is usually applied to quadratically constrained
quadratic programs (QCQP) [16]. In order to transform (3)
into a QCQP problem we use the following lemma from [15].

Lemma 1. Let z ∈ Rn. It holds true that

n∑
i=1

ρh (z) = min
u∈Rn

‖z − u‖22 + 2h ‖u‖1 . (9)

From the lemma it can be deduced that (3) is equivalent to

min
s,u

‖y −Hs− u‖22 + 2h ‖u‖1
s.t. s ∈ Bm, u ∈ Rn

(10)

in the sense that if s∗,u∗ minimizes (10) then s∗ minimizes
(3). Now, we can use the SDR technique to relax the above
problem. First, it can be seen that (10) is equivalent to

min
S,Q,U ,s,u

fBCH , Tr

L

 S Q s
QT U u
sT uT 1

+ 2h ‖u‖1

s.t. diag (S) = 1(
S Q

QT U

)
=

(
s
u

)(
s
u

)T
(11)

where

L ,

 HTH HT −HTy
H I −y

−yTH −yT yTy

 . (12)

Then, the last constraint can be relaxed to a convex one giving

min
S,Q,U ,s,u

fBCH , Tr

L

 S Q s
QT U u
sT uT 1

+ 2h ‖u‖1

s.t. diag (S) = 1(
S Q

QT U

)
�
(

s
u

)(
s
u

)T
(13)

which is a convex problem. To calculate the computational
efficiency of (13), it can be transformed to a standard SDP
problem. First a slack variable t ∈ Rn is introduced to
(13) replacing ‖u‖1in the objective by 1T t and adding the
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constraint −t ≤ u ≤ t. Then, using Schur’s lemma [14]
and because t ≥ 0 there exists a positive semi-definite ma-
trix T ∈ Rn×n such that diag (T ) = t transforming the
problem to a standard SDP problem which can be solved in
O
(
(m+ 2n+ 1)

4.5
)

calculations [16]. As m ≤ n, we con-

clude that the computational complexity of (13) is O
(
n4.5

)
.

Several heuristics can be used to retrieve a binary estima-
tor from the above problem. In this paper we use the Gaussian
Randomization which proved to be very effective in the Gaus-
sian case [16]. A vector z is randomly chosen fromN (0,Σ)
where

Σ =

(
X s
sT 1

)
. (14)

Then, the first m components of z are divided by the last
component and a sign is taken

ŝSDRH = sign

(
1

zm+1

(
z1 z2 .... zm

)T)
(15)

this process is repeated 50 times and the best estimation is
taken.

4. TIGHTNESS OF THE OBJECTIVE VALUE OF
SDRH DETECTOR

In this section we prove that the objective value of the SDRH
is between the the objective value of the Hypercube con-
strained Huber (HCH) detector and the objective value of the
Binary Constrained Huber detector (BCH). i.e.

min fBCH ≥ min fSDRH ≥ min fHCH ≥ min fNCH .
(16)

This does not prove that the BER of SDRH is smaller than
the BER of BCH but it is a good heuristic to assess that this
is correct. In the next section we show by simulations that the
BER of SDRH is substantially better then the BER of BCH
for high signal to noise ratio (SNR).

The left and right inequalities in (16) are trivial and we
focus on the inner inequality. For this purpose, first, let us
observe that (

HTH HT

H I

)
� 0. (17)

This can be proven by Schur’s lemma as I � 0 and HTH −
HT I−1H = 0 � 0. Then, by rewriting the last constraint in
(13) we get(

S Q

QT U

)
−
(

s
u

)(
s
u

)T
� 0. (18)

Using Tr (AB) ≥ 0 for A � 0 and B � 0, we obtain

Tr

{(
HTH HT

H I

)(
S Q

QT U

)}
≥

Tr

{(
HTH HT

H I

)(
s
u

)(
s
u

)T} (19)

and subsequently using Lemma 1 it can be seen that

fSDRH (S,Q,U , s, u) ≥ ‖y −Hs− u‖22+2h ‖u‖1 ≥ fBCH (s)
(20)

for each feasible point in (13). It remains to prove that s
taken from the minimal point in (13) is a feasible point in
(8) . Again, using Schur’s lemma and the last constraint in
(13) it can be deduced that S � ssT . Now, from the defini-
tion of positive semi-definiteness and the second constraint in
(13) we can see that

eTi Sei ≥ eTi ss
Tei =⇒ 1 ≥ s2i

where ei a lengthm unit vector. So, s taken from the minimal
point of (13) is a feasible point in (8) thus concluding the
proof.

5. SIMULATION RESULTS

For simulation purposes we use a two-term Gaussian dis-
tribution: Gi = N

(
0, κσ2

)
with κ = 100 and ε = 0.01

which serves as an approximation to Middleton Class A noise
model [17]. The elements of H are chosen randomly from
N
(
0, 1
mn

)
and are Independent and identically distributed

(i.i.d).
Fig. 1 shows the performance of SDRH detector (ŝSDRH )

in comparison with the non-Constrained Huber (NCH) detec-
tor (ŝNCH ) , HCH detector (ŝHCH ), the Binary Constrained
Huber (BCH) detector (ŝBCH ) and the Binary Constrained
Gaussian (BCG) detector. It can be seen that while all Hu-
ber’s detectors (NCH, HCH and SDRH) are better than the
best Gaussian estimator (BCG), SDRH is much closer to BCH
than the others.

To demonstrate further the performance of SDRH, simula-
tions were done on a bigger system where brute force search
is intractable. Fig. 2 shows a performance comparison be-
tween the three Huber’s detectors (NCH, HCH and SDRH)
and the Semi-definite Relaxed Gaussian (SDRG) detector for
m = 20, n = 60.

6. CONCLUSIONS

In this paper we developed a robust SDR detector for binary
constrained MIMO in weakly non-Gaussian channels with
maximal computational complexity of O

(
n4.5

)
. We proved

that in terms of objective value this detector is tighter than
standard relaxation techniques of the binary constrained Hu-
ber’s detector. We also showed experimentally that it is sub-
stantially better than Gaussian detectors and Huber’s detector
standard relaxation techniques of the binary constrained Hu-
ber’s detector.
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Fig. 1. Bit Error Ratio V.S. SNR for m = 6, n = 31.

Fig. 2. Bit Error Ratio V.S. SNR for m = 20, n = 60.
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