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ABSTRACT

Recent literature on robust statistical inference suggests that promis-
ing outlier rejection schemes can be based on accounting explicitly
for sparse gross errors in the modeling, and then relying on com-
pressed sensing ideas to perform the outlier detection. In this paper,
we consider two models for recovering a sparse signal from noisy
measurements, possibly also contaminated with outliers. The mod-
els considered here are a linear regression model, and its natural one-
bit counterpart where measurements are additionally quantized to a
single bit. Our contributions can be summarized as follows: We
start by providing conditions for identification and the Cramér-Rao
Lower Bounds (CRLBs) for these two models. Then, focusing on
the one-bit model, we derive conditions for consistency of the as-
sociated Maximum Likelihood estimator, and show the performance
of relevant ℓ1-based relaxation strategies by comparing against the
theoretical CRLB.

Index Terms— Sparsity, robustness, outlier detection, Cramér-
Rao lower bounds.

1. INTRODUCTION

Statistical learning of information from available data is of great im-
portance in many signal processing and machine learning applica-
tion areas, like speech or bioinformatics. Robustness against outliers
(grossly corrupted data points that violate the postulated model) is an
important requirement in this context, and often critical for success-
ful application of learning methods in practice.

Robust estimators have been widely pursued in the context
of linear least squares regression, which is well-known for being
very sensitive to outliers. In the linear regression context, estima-
tors based on robust penalty functions such as the so-called Huber
function [1] and the now ubiquitous ℓ1-norm are used, and numer-
ous other alternatives such as the least trimmed squares (LTS) and
RANSAC estimator have been proposed. The common underlying
idea is to perform outlier rejection using penalty functions that dis-
card or downweight large residuals, which are typically associated
with outliers. While this is intuitive in the linear regression context,
outlier rejection in more complicated nonlinear models is usually far
less obvious.

In general, sparsity is linked to statistical inference in two fun-
damental ways. First, often the signal that one wishes to recover
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from measurements is sparse (even if high-dimensional) – either nat-
urally, or after projecting it on a proper basis. Second, the number of
outlier-contaminated measurements is usually small, hence outliers
are sparse. Links between sparsity and robustness against outliers
have recently been drawn in [2], and more recently in [3], where it
was proposed to introduce a sparse auxiliary vector variable to ac-
count for outliers, as a universal model robustification strategy.

These ideas are further explored in this paper. In particular,
the models considered here are the following. Consider a given se-
quence of vectors {di}

N
i=1, where di ∈ R

p. We examine first a lin-
ear regression setup which incorporates explicitly additive outliers
{oi}

N
i=1 (one per measurement) and noise {ei}

N
i=1, thus forming

measurements {ri}
N
i=1 as ri = d

T
i w + ei + oi, ∀i (M1). However,

we shall be primarily interested in the natural one-bit counterpart of
(M1), in which measurements are additionally quantized to a single-
bit, thus forming binary outcomes {yi}

N
i=1 as yi = sign(dT

i w +
ei + oi), ∀i (M2). We treat w ∈ R

p and the vector o ∈ R
N of vari-

ables {oi}
N
i=1 as sparse deterministic unknowns. Denoting as ||·||0

the cardinality of a vector (i.e., the number of non-zeros), we assume
that ||w||0 ≤ κw and ||o||0 ≤ κo, where κw and κo are fixed known
positive integers. Noise variables {ei}

N
i=1 are assumed i.i.d. Gaus-

sian N (0, σ2) with known variance. For technical reasons which
will become evident next, we also assume that all unknown param-
eters are bounded, i.e., that there exist positive constants Rw and
Ro such that w ∈ Bw , {w ∈ R

p | ||w||∞ ≤ Rw} and similarly
o ∈ Bo , {o ∈ R

N | ||o||∞ ≤ Ro}.
Under either model (M1) or (M2), we are interested in estimat-

ing w from available data, as well as detecting the measurements
which are contaminated with outliers. From this estimation theoretic
standpoint, our goal in this paper is to provide model identification
conditions and the best achievable mean-square-error (MSE) per-
formance for (M1) and (M2), by providing the Cramér-Rao Lower
Bound (CRLB) under sparsity constraints, building on earlier work
on the CRLB computation in constrained parameter estimation [4],
[5]. In particular, we describe how the identification and CRLB re-
sults from [6] and [5] respectively, apply to (M1), and extend to
(M2). Finally, we focus on (M2) and show the potential of associ-
ated ℓ1 relaxation strategies, by comparing against the CRLB.

Before presenting the results, it is worth noting some applica-
tions where the models are useful. Applications for (M1) abound,
so we only focus here on briefly presenting a few recent applications
for (M2):
Robust Preference Measurement (PM) [7],[8]: In PM, often the ob-
jective is to estimate a consumer’s response function based on his ex-
pressed choice-based data, that is, his expressed preferences among
given products. A product α is usually represented by a feature vec-
tor pα ∈ R

p, and the underlying assumption is that the consumer’s

5489978-1-4799-0356-6/13/$31.00 ©2013 IEEE ICASSP 2013



response is formed as a noisy linear combination of the product’s
features with weights {wi}

p

i=1 given by the consumer’s partworth
vector w [9]. Given an option between two products α and β, a
consumer chooses the one that has larger response value. Mathe-
matically, his choice is produced by taking the sign of the differ-
ence of the two responses. The goal in choice-based PM is then
to estimate the underlying partworth values from such choice-based
data. Partworth values can be used to predict future preferences,
but are also useful per se to the retailer, marketer, or product de-
signer, e.g., for consumer sensitivity analysis. The proposed model
(M2) is ideally suited for partworth estimation in modern (mostly
web-based) PM systems, which may involve products with a very
large number of features and grossly inconsistent response data due
to the presence of outliers. The estimation theoretic approach pro-
vides an interesting alternative over other state-of-the-art approaches
for choice-based preference analysis, which are primarily based on
support-vector-machine (SVM) classifiers (see [7] for additional de-
tails).
Robust One-bit Compressed Sensing: The problem of recovering a
sparse signal from one-bit quantized noisy linear measurements in
AD conversion has gained recent attention by several researchers
(see e.g., [10], [11] and references therein). In addition to small
noise affecting all the entries of the received signal prior to one-bit
quantization, there can also be sign-changes due to impulsive noise.
This can be modeled as an outlier effect, rendering (M2) a suitable
candidate model.

2. IDENTIFICATION & CRLB FOR MODEL M1

Consider first the linear regression setup which incorporates explic-
itly additive outliers. In matrix form, the model is the following

r = D
T
w + e + o with ||w||0 ≤ κw, ||o||0 ≤ κo, (1)

where r is the vector that contains the measurements {ri}
N
i=1 and e

contains the i.i.d. Gaussian noise variables {ei}
N
i=1. The matrix D ,

[d1, · · · ,dN ] ∈ R
p×N is a (typically fat) matrix whose columns

comprise the di’s.
Due to the presence of the auxiliary variables {oi}

N
i=1, the esti-

mation problem of (w,o) is underdetermined; considering however
that both w and o are sparse, it is important to determine when the
estimation task is meaningful, i.e., when the parameters (w,o) are
identifiable. Herein, the parameters are said to be identifiable if and
only if for two different parameter vectors (w0,o0) 6= (w,o) the
two corresponding random vectors r0 and r are not observationally
equivalent, i.e., the distribution of the data conditioned on (w0,o0)
is different than the distribution conditioned on (w,o). Under this
definition, a condition for identification follows from [6]. As in [6],
for the matrix Q ,

ˆ

DT IN×N

˜

define Spark (Q) as the minimum
number of linearly dependent columns in Q. Then, a sufficient con-
dition for identification can be expressed in terms of Spark (Q) and
the sum of the cardinality bounds κw and κo as (see [6])

Spark(Q) > 2(κw + κo). (2)

In particular, if (2) is satisfied as N → ∞, the limiting log-likelihood
function associated with (1) will have a unique global maximum
[15]. Note that (2) is only sufficient for identification in our con-
text, and also observe the following: Generating the entries of D

from a continuous distribution yields Spark(Q) = N + 1, almost
surely. This essentially means that in the regime where κw << κo,
one can have almost half of the measurements contaminated with
outliers, while still retaining parameter identifiability.

Assuming that the errors {ei}
N
i=1 in (1) are small and bounded,

Candes et al. in [12] proposed convex optimization based estimators
which, under suitable conditions on DT, attain an estimation error
upper-bounded by a constant times the error obtained had there been
no outliers in the data {ri}

N
i=1. On the other hand, under the Gaus-

sianity assumption on e, the corresponding CRLB on the MSE in the
estimation of w can be derived using the approach in [5]. Specifi-
cally, the analysis in [5] shows that the CRLB in sparse linear regres-
sion equals the covariance of an oracle estimator (i.e., an estimator
which assumes to know exactly the non-zero pattern in the unknown
sparse vector), provided that the degree of sparsity (the number of
non-zeros) is known a-priori. The model in (1) has a specifically
structured dictionary matrix Q, as well as structure on the non-zero
pattern of (w,o). For this model it turns out that the CRLB at w

depends only on w and the di’s corresponding to the outlier-free
measurements. We present this formally in Section 3, comparing the
CRLB result for (M1) with the corresponding result for (M2).

3. EXTENSION TO MODEL M2

We now show how the identification result extends to (M2) and also
present the CRLB. In matrix form, (M2) can be expressed as

y = sign(DT
w + e + o) with ||w||0 ≤ κw , ||o||0 ≤ κo, (3)

where y is the vector containing the binary measurements {yi}
N

i=1
.

One complication arising from the sign operation in (3) as com-
pared to the linear regression model in (1) is the following: When
σ2 → 0 in (1), it is well-known that one can recover w exactly with
a finite number of measurements – under suitable conditions on the
matrix DT – provided that the fraction of corrupted entries of DTw

is not too large. In particular, [13] proved that if σ2 → 0 and the cor-
ruption o contains at most a fixed fraction of nonzero entries, then
vector w is the unique solution of the minimum-ℓ1 approximation
problem

minimize
w∈Bw

||r −D
T
w||1. (4)

While such recovery is possible in the linear regression case, in the
case of the binary response model given in (3) the true parameter
w cannot be recovered in the absence of noise, even with infinite
number of measurements. 1 The scenario completely changes in the
presence of noise, however.

Model identification is still possible for (3) in the same statis-
tical sense as in Section 2. In fact, a sufficient condition for iden-
tification is (2), the same as in the linear regression case. To see
this, let I+ be the set of indices {i | yi = 1}, and similarly define
I− = {i | yi = −1}. Since noise samples ei are independent, the
probability of a random partition of the observations to I+ and I−

can be calculated explicitly to be

py =
Y

i∈I+

Pr
h

d
T
i w + oi ≥ ei

i

Y

i∈I
−

Pr
h

d
T
i w + oi ≤ ei

i

=

N
Y

i=1

Φ

„

yid
T
i w + yioi

σ

«

,

where Φ(u) is the cumulative distribution function of the Gaussian
density. The function Φ(u) is strictly monotonic, therefore the prob-
ability distribution of the data will be distinct for a specific parameter
(w,o), as long as the condition in (2) is satisfied.

1If the magnitude ||w||2 is provided, σ
2 → 0, and o = 0 in (3),

lower/upper bounds on the possible reconstruction error of w were proven
in [11], and these bounds go to zero as N → ∞.
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Now we present the CRLB result for (3). First of all, there is the
Fischer Information Matrix (FIM) [14] for the unconstrained prob-
lem, i.e., the FIM for the problem of estimating (w,o) in (3) without
making use of any deterministic prior cardinality constraints. This
matrix is the expected value of the Hessian of the log-likelihood
function

l (w,o) =

N
X

i=1

log Φ

„

yid
T
i w + yioi

σ

«

, (5)

where the expectation is taken with respect to the measurement vec-
tor y and the derivatives are taken with respect to (w,o). The un-
constrained FIM is denoted here as J , Ey

˘

∇2l(w,o)
¯

.
Given the sequence {di}

N
i=1, the unconstrained FIM for (3) (see

[7] for a derivation) is given by J = Q
T
ΛQ, where Λ ∈ R

N×N is
a positive diagonal matrix with elements

Λii =
1

2πσ2
exp

»

−
(dT

i w + oi)
2

σ2

–

×

»

Φ−1

„

dT
i w + oi

σ

«

+ Φ−1

„

−
dT

i w + oi

σ

«–

.

(6)

Note that J is singular because Q is fat by construction, so the un-
constrained CRLB does not exist for the problem at hand. However,
we are interested in the constrained CRLB, i.e., the CRLB for points
known to obey the cardinality constraints in (3). The CRLB for such
points typically exists. As pointed out in [5], albeit non-smooth, the
set of vectors with restricted cardinality is locally balanced, meaning
that it can be described locally (at any point) by a feasible subspace
F . In fact, one can assign at any given point with restricted cardinal-
ity a matrix of feasible directions U, whose columns span F . In the
case of our model (3), we associate to each point (w,o) a feasible
subspace spanned by

U =

»

Us 0

0 Uo

–

, (7)

where Uo is either the subset of columns of the identity matrix
IN×N corresponding to the non-zero pattern of o if ||o||0 = κo,
or precisely the identity matrix IN×N if ||o||0 < κo. Matrix Us

is determined in the same way. Once such description is found, the
value of the constrained CRLB at point (w,o) depends only on the
unconstrained FIM and the matrix of feasible directions U evaluated
at the point (w, o), as the following lemma asserts [5]:

Lemma 1. Let R (U) denote the range space of the matrix of fea-
sible directions U. If the condition R(UU

T) ⊆ R(UU
T
JUU

T)
holds, the covariance of any unbiased estimator for the point (w,o)

satisfies Cov (ŵ, ô) � U(UT
JU)†UT. Conversely, if the above

condition does not hold, there is no unbiased finite-variance estima-
tor for (w,o).

Lemma 1 actually translates (after straightforward manipula-
tions) to our model (3) in the following way (see [7] for the details –
here we omit the proof due to lack of space):

Theorem 1. Consider the estimation problem in (3) and assume
that (2) holds. The CRLB on the MSE E (w) , E||ŵ − w||22 of any
unbiased estimator ŵ for point w is given as follows

E (w) ≥ Tr
“

U
T
s DLD

T
Us

”−1

when ||w||0 = κw, ||o||0 = κo

E (w) ≥ Tr
“

DLD
T

”†

when ||w||0 < κw, ||o||0 = κo,

where L ∈ R
N×N is diagonal with Lii = Λii if oi = 0 and Lii =

0 if oi 6= 0. No finite-variance unbiased estimator exists whenever
||o||0 < κo.

Observe that the CRLB depends only on the outlier-free mea-
surements and the columns of DT corresponding to the non-zero
pattern of w. Finally, we remark that the corresponding CRLB for
the linear regression model in (1) is very similar to that above. In
particular, using the above theorem and choosing Lii = 1/σ2 if
oi = 0 and Lii = 0 if oi 6= 0 recovers the CRLB result for (1).
Theorem 1 allows one to gauge the MSE performance of the associ-
ated ML estimator for (3), showing also the performance capacity of
relevant ℓ1 relaxation strategies in this context.

4. ML ESTIMATOR PROPERTIES

Joint ML estimation of (w,o) in (3) amounts to solving the opti-
mization problem

maximize
w∈Bw,o∈Bo

l (w, o) subject to: ||w||0 ≤ κw , ||o||0 ≤ κo, (8)

a formulation reminiscent of the form of the ML estimator for the
probit model [15]. Essentially, our work in this paper can be viewed
as a natural robustification of such models against outliers (grossly
corrupted data points) and/or datasets with a very large number of
variables in w (necessitating variable selection to obtain meaningful
estimates).

Each summand log Φ(u) in l (w,o) in (5) is concave, increasing
in u and tends to zero as u → ∞, therefore the bounding boxes Bw

and Bo ensure that (8) always has a maximizer. Now, an interesting
question is whether the estimate ŵ provided by (8) is consistent, i.e.,
whether (8) yields the true vector of partworths as a solution in the
limit. We treat this topic next, providing a sufficient condition for
consistency:

Theorem 2. Consider the estimation problem in (3) with unknown
parameters (w0,o0), σ2 > 0, and assume that {di}

N

i=1
are samples

from an underlying probability distribution and satisfy the identifi-
ability condition in (2). The ML estimate in (8) converges in prob-
ability to w0 as N → ∞, assuming that the number of outlier-
contaminated measurements increases sublinearly with N, i.e., that
lim

N→∞
κo/N = 0.

Proof. Given in [7].

On the practical side, it is clear that the ML estimation prob-
lem in (8) can be solved exactly by enumerating all possible sparsity
patterns for (w,o), and for each sparsity pattern solving a convex
optimization problem. Although this direct enumeration approach
yields a consistent estimator, it is unfortunately often computation-
ally intractable. Instead, one may formulate a tractable approxima-
tion to (8) by replacing the cardinality constraints in (8) with convex
ℓ1-norm constraints. This is motivated since the ℓ1-norm is the tight-
est convex relaxation of the cardinality function [17]. Making this
ℓ1 replacement and penalizing the constraints at the objective yields
the convex optimization problem

minimize
w,o

φ(w,o) = −l (w,o) + λw||w||1 + λo||o||1 (9)

with fixed positive regularization parameters λw and λo. These con-
trol the trade-off between the value of l (w,o) and the number of
non-zero elements of w and o respectively. These parameters are
most often tuned in a heuristic fashion: One starts from a suitable
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initial point
`

λi
w, λi

o

´

and iterates until the desired sparsity/fit trade-
off is achieved. The convex alternative in (9) can be solved effi-
ciently using a variety of polynomial-time algorithms, including in-
terior point methods [17]. In particular, the work in [16] deals with
distributed solution strategies for solving (9), which mainly become
interesting when the number of observed samples N becomes ex-
ceedingly large.

5. NUMERICAL EXPERIMENTS

In our experiments, we benchmark the MSE performance of differ-
ent MLE variants for (3), against the corresponding CRLBs. For the
MSE comparison, the di’s were generated as i.i.d. Gaussian vectors
drawn from N (0, I), each comprising p = 20 elements. The un-
known partworth vector w0 was assumed sparse i.i.d. Gaussian with
NZ = 3 non-zero elements drawn from N (0, 1). The MSE of all
tested estimators was evaluated using MC = 300 Monte Carlo trials.
For each trial, binary data were generated according to model (M2)
in (3). The outlier percentage considered in the measurements was
1% (outliers correspond to uniform at random sign flips). The addi-
tive noise variables ei’s were assumed i.i.d. drawn from N (0, 1). In
each trial, instead of solving (8) directly by enumerating all possi-
ble sparsity patterns for (w,o), all estimators obtain the estimate for
(w,o) through relaxation. In particular, we first (i) solve the prob-
lem in (9) to obtain a plausible sparsity pattern for (w,o), and then
(ii) we re-solve the problem having the sparsity pattern in (w,o)
fixed.

The MLE variants tested here are the following: MLE-NPS
performs outlier rejection but does not use the prior-information
that w0 is sparse. This variant solves (9) using λw = 0 and
λo = 0.1||∇ol(0, 0)||∞ as initial regularization parameter values,
and then iterates with respect to λo to achieve the desired spar-
sity level in the estimate ô. MLE-NOR accounts for w-sparsity
but does not account for outliers, solving (9) using λo = 0, and
λw = 0.1||∇w l(0, 0)||∞ for initialization. MLE-PSOR performs
simultaneously outlier rejection and also accounts for w-sparsity
using λw = 0.1||∇w l(0, 0)||∞ and λo = 0.1||∇ol(0, 0)||∞ as
initial values for the regularization parameters. The (Root)-MSE
results are depicted in Figure 1, where two additional CRLB curves
are plotted as functions of the number of samples N . CRLB-PSOR
is the CRLB of any unbiased estimator knowing the number of
outliers and the fact that w0 is NZ-sparse, while CRLB-NPS is
the CRLB of any unbiased estimator not utilizing the information
that w0 is NZ-sparse. Observe the difference in the best achievable
error performance, to get a feel on how sparsity in w can affect the
expected estimation accuracy. One expects that the effect of the
prior information regarding w-sparsity on the best achievable MSE
performance will diminish as N grows, and that the two CRLB
curves will meet at some point, but we see that the rate of which
this happens can actually be slow. On the other hand, note that the
MLE variant which does not perform outlier rejection fails miser-
ably, while the other two estimators operate close to their respective
CRLBs. This speaks for a key strength of the formulation in (3):
The ability to detect and remove outliers efficiently.
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