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ABSTRACT
We consider the problem of linear projection design for
incoherent optical imaging systems. We propose a compu-
tationally efficient method to obtain effective measurement
kernels that satisfy the physical constraints imposed by an
optical system, starting first from arbitrary kernels, includ-
ing those that satisfy a less demanding power constraint.
Performance is measured in terms of mutual information
between the source input and the projection measurement,
as well as reconstruction error for real world images. A
clear improvement in the quality of image reconstructions is
shown with respect to both random and adaptive projection
designs in the literature.

Index Terms— Compressed sensing, low resolution imag-
ing, projection algorithms

I. INTRODUCTION
Compressive Sensing (CS) is the art of capturing impor-

tant attributes of a high dimensional signal from a relatively
small set of linear projections. It is possible to guarantee
fidelity of reconstruction from random projections when the
high dimensional signal exhibits low dimensional structure
such as sparsity with respect to some dictionary [1], [2].
However, measurements that are aligned with the signal
model have recently been shown to provide significant
performance improvements over random projections [3], [4].
The models used to represent signals can incorporate struc-
tured sparsity [5], [6], manifold descriptions [7] or statistical
models [8]–[10]. In the latter case the linear projections
should be chosen to align the probability distribution of the
signal with that of the measurement noise. In the special
case of image processing a Gaussian mixture model (GMM)
is known to provide an accurate description of patches
extracted from natural images.

Among the metrics that can be used to drive kernel
measurement optimization, mutual information between the
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input source and the projection measurements has been
recently proven to provide state-of-the-art results for image
reconstruction [10]. In this case, tools from communication
theory are imported and adapted to the CS framework
to optimize linear projection measurements. However, the
constraints taken into account in the optimization process are
directly derived from their counterpart in the communication
problem, and they do not always reflect the limitations
imposed by an actual imaging system.

In this work, we consider incoherent imaging systems in
which linear projections of the image are computed directly
in the optical domain. Given that the devices implementing
the linear projections are optical, specific constraints are
imposed on the kind of projections that can be computed.
We will present here a procedure to obtain linear projection
designs for signal reconstruction that prove effective and
that satisfy the constraints imposed by an incoherent optical
imaging system.

Existing kernel designs in the literature are compliant with
more tractable constraints. For example, sensing matrices
are assumed to be drawn from Gaussian or Bernoulli dis-
tributions [11], or they are adapted to the signal model, but
they only satisfy a power constraint [10]. Other approaches
consider the physical limitations introduced by incoherent
optical imagining systems [3], [4], but they do not use state-
of-the-art methods to adapt the measurement kernels to the
input source.

II. SYSTEM MODEL

We consider a compressive imaging system as in Fig. 1,
where a naturally illuminated input scene is captured by
computing linear projections of the object irradiance distri-
bution, directly in the optical domain [4]. We represent the
two-dimensional object irradiance of dimensions

√
n×
√
n,

where n is an integer, by the column vector x ∈ Rn. We
assume that x can be described as a random vector whose
probability density function (pdf) p(x), is known, or can
be learned from a training data set. The source irradiance is
collected over a predefined time interval by photon detectors,
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Fig. 1. Schematic representation of the incoherent optical imaging system. Linear projections are computed directly in the
optical domain.

and the elements of x represent the number of photons
corresponding to a particular region of the two dimensional
image plane. Linear projections performed in the optical
domain are modeled by multiplying x by the measurement
matrix (kernel) M ∈ Rm×n, in which we consider in
general1 m � n. The (small) set of noisy measurements
from which the signal x will be reconstructed is represented
by the vector

y = Mx + w, (1)

in which w is a Gaussian vector with zero mean and
covariance matrix Σw = E

[
wwT

]
, accounting for the

termal noise introduced after photo-current conversion2.
The linear projections performed by the matrix M can be

seen to arrange the photons emitted by the source among
the small number of measurements, contained in the vector
y, and due to conservation of energy, the total number
of photons is given (and finite). Therefore, the projection
kernels that are implementable in the optical domain must
satisfy the following constraints,

0 ≤ mij ≤ a ∀i, j (2a)∑
i

mij ≤ a ∀j, (2b)

where mij is the i-th row, j-th column entry of M. Note that
the constant a > 0 permits a general mathematical formu-
lation of the problem. However, we will include numerical
results for the case a = 1, as this is the only value reflecting
a physical implementation of the system.

III. KERNEL DESIGN WITH OPTICAL
CONSTRAINTS

III-A. Minimum Frobenius norm kernel design
The kernel design problem subject to the constraints in (2)

is difficult to solve for various performance metrics, such

1Each row of the projection matrix M is physically implemented using
a spatial light modulator (SLM), followed by light-collection (LC) optics
that directs the light to photon detectors.

2For the sake of mathematical tractability of the model, we neglect the
effect of the signal shot noise (Poisson noise) and of the dark current
associated to photon detectors.

as mutual information and minimum mean square error
(MMSE). Therefore, we propose here a minimum Frobenius
norm method to obtain effective measurement kernels that
are compliant with the physical constraints. Namely, the
proposed design can be described by the following two steps
procedure.

1) Identify an effective measurement matrix M0 which
may not satisfy the constraints in (2), but that is shown
to provide good performance in terms of a predefined
metric.

2) Compute the matrix Mmd that minimizes the Frobe-
nius norm distance from M0 and satisfies the optical
constraints.

A complete characterization of the proposed projection de-
sign is obtained by solving the optimization problem

minimize
M

‖M0 −M‖F

subject to 0 ≤ mij ≤ a, ∀i, j,∑
i

mij = a, ∀j,
(3)

where the symbol ‖ · ‖F denotes the Frobenius norm of a
matrix. On denoting the entries of M0 by m0,ij , the solution
of the problem (3) is described in the following theorem.

Theorem 1: The solution of the minimum Frobenius norm
problem in (3) can be characterized as follows,

mmd,ij =

[
m0,ij −

∑
i∈Pj

m0,ij − a
|Pj |

]+
(4)

with [x]+ = max{0, x}, where Pj denotes the set of indexes
i for which the corresponding mmd,ij in the optimal solution
is greater than zero.

Proof: The proof follows directly from the evaluation of
the Karush-Kuhn-Tucker (KKT) conditions [12] associated
to the optimization problem in (3).

Remark 1: The characterization of the minimum Frobe-
nius norm solution in Theorem 1 is implicit, as the term Pj
depends on the values of the optimal mmd,ij’s. However, an
efficient implementation, which we leverage in Section IV,
can be devised by considering a geometrical interpretation
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of the problem. Namely, each column in Mmd is a vector in
Rm that is obtained by projecting the corresponding column
of M0 onto a rescaled version of the canonical simplex of
Rm. The computation of such a projection is a well studied
problem and fast solutions have been proposed. Among
the results in the literature, we implemented the iterative
algorithm in [13], as it is proved to converge to the correct
value of Pj in at most m iterations.

III-B. Mutual information based kernel design
We now consider mutual information based kernel design,

that aims at maximizing the mutual information between the
input source and the projection measurements, I(x;y). This
quantity has been recently proved to be an effective proxy to
adaptively design measurement projections for CS [10]. The
reason lies in the fact that I(x;y) represents the amount of
information over x that can be extracted from the observation
of the random (measurement) vector y. However, the mutual
information maximization problem has been solved for the
case in which only a trace constraint is imposed on the
matrix MMT [10]. Hence, we compute M0 as the solution
of

maximize
M

I(x;y)

subject to tr(MMT) ≤ b.
(5)

Different values of the trace constraint b will correspond
to different M0’s, and, consequently, to different minimum
Frobenius norm kernel designs. Therefore, we decide to
choose b as the smallest value for which the problem in (5)
is a relaxed version of the mutual information maximization
problem with constraints (2). In particular, it is easy to verify
that if b = na2, then the set (2) is contained in the feasible set
of (5). In fact, the set of matrices verifying tr(MMT) ≤ na2
contains the set of matrices having `2 norm over each column
less or equal than a2. Moreover, as 0 ≤ mij ≤ a, ∀i, j, then∑
imij ≤ a⇒

∑
im

2
ij ≤ a2, ∀j.

Given this characterization of M0, the minimum Frobe-
nius norm approach is also justified by the regularity prop-
erties of mutual information and, namely, by the following
result.

Theorem 2: For all matrices M1 and M2 such that
tr(M1M

T
1 ) ≤ na2 and tr(M2M

T
2 ) ≤ na2,

|f(M1)− f(M2)| ≤ L ‖M1 −M2‖F, (6)

where f(M) = I(x;y = Mx + w), Σx is the input

covariance matrix and L = a tr(Σx)
√
n tr(Σ−2w ).

Proof: The proof is not reported here for reasons of
space, and it is based on the characterization of the Jacobian
matrix of the function f , as given in [14].
Note that Theorem 2 states that the function f(M) is L-
Lipschitz over the set of matrices M verifying the trace
constraint tr(MMT) ≤ na2. We conclude that for all M
satisfying the optical constraints in (2),

|f(M0)− f(M)| ≤ L ‖M0 −M‖F. (7)
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Fig. 2. Mutual information vs. inverse of the noise power.
n = 64,m = 10. GMM input source (trained from Berkley
Segmentation Dataset). Comparison of mutual information
values obtained with different projection designs. Optimal
trace constrained, proposed solution, dual-rail rescaled im-
plementation [4], random Dirichlet matrices.

Therefore, this justifies our approach because minimizing
the Frobenius distance ‖M0 − M‖F also minimizes an
upper bound to the mutual information loss with respect
to the solution of the relaxed optimization problem with
trace constraint. In other terms, our approach consists in this
case to solving a relaxed version of the mutual information
maximization problem and then finding a feasible matrix
that approaches performance close to that guaranteed by the
optimal solution of the relaxed problem.

IV. NUMERICAL RESULTS
We present numerical results that compare the proposed

measurement design with both random and adaptive mea-
surement approaches in the literature. In Fig. 2 are reported
the values of mutual information (versus the inverse of the
noise power) obtained with a synthetic GMM input source.
In particular, the input pdf p(x) is a 20-component GMM
that is trained on 100,000 patches of size 8 × 8 pixels,
randomly extracted from 500 natural images in the Berkeley
Segmentation Dataset3 according with the dictionary learn-
ing method described in [9].

The matrix M0 is the solution of the problem in (5)
with a = 1, and is computed via the method described
in [10]. Then, the proposed solution Mmd is compared
with the following designs satisfying the optical constraints.
We consider the dual-rail implementation Mdr described

3http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/
resources.html
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in [4], for which two complementary arms are devoted to
represent separately the positive and negative values of the
projection matrix. As a consequence, this approach results in
doubling the noise covariance. Moreover, in order to verify
the total photon counting constraint, the measurement matrix
is obtained as Mdr = M0/K, in which the normalization
constant is defined as K = maxj

∑
i |m0,ij |.

Results obtained with random projection matrices are also
shown: in particular, we have considered the case in which
the columns of M are independent identically distributed
(i.i.d.) Dirichlet random vectors [15], that is when the
vectors [m1j , . . . ,mmj ]

T are independently drawn from the
distribution

p(x1, . . . , xm;α1, . . . , αm) =
1

B(α1, . . . , αm)

m∏
i=1

xαi−1
i

(8)
in which x1, . . . , xm−1 ≥ 0, xm = 1 −

∑m−1
i=1 xi and

B(α1, . . . , αm) is the multinomial Beta function [16]. Note
that, for all choices of the concentration parameters αi,
the corresponding random measurement matrices satisfy the
optical constraints with a = 1. In particular, we have con-
sidered the two cases for αi = α = 1 and αi = α = 1/m.
From the results in Fig. 2, it is possible to observe that
the proposed method offers a gain of approximately 10 dB
in the medium/low-noise regime with respect to the dual-
rail rescaled implementation and of approximately 2.5 dB
with respect to Dirichlet measurements with concentration
parameter α = 1/m. This choice of α guarantees better
performance than α = 1 in light of the fact that, on
average, the square values of the entries in M are decreasing
functions of α. In fact, it is straightforward to show that,
when the column of the measurement matrix are sampled
from a Dirichlet distribution with concentration parameter
α, then E

[
‖M‖2F

]
= E

[
tr(MMT)

]
= n α+1

mα+1 . Hence, a
smaller value of α guarantees higher squared amplitude of
the measurements, and eventually a higher output SNR.

In the following, we evaluate reconstruction fidelity in
terms of the peak signal-to-noise ratio (PSNR) and show
experimental results on the performance of the proposed
measurement design when applied to image reconstruction.
We consider the widely analyzed 256×256 image “pepper”
and divide it into 1024 non-overlapping patches of dimension
8× 8. The patches are assumed to be statistically described
with the GMM signal model learned on the (independent)
Berkeley database, and are reconstructed via the conditional
mean estimator x̂(y) = E [x|y] on the basis of the mea-
surements obtained with the different projection matrices
described in previous paragraphs.

The PSNR values obtained with the previously described
projection matrices with various noise power levels are
shown in Fig. 3. The proposed method provides an advantage
of more than 2 dB of PSNR with respect to the other methods
satisfying the optical constraints throughout a wide range
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Fig. 3. Image “pepper”. PSNR vs inverse of the noise
power. Number of projections, m = 20. Comparison of the
performance obtained with different projection designs. Op-
timal trace constrained, proposed solution, dual-rail rescaled
implementation [4] , random Dirichlet matrices.

of noise power levels. Only when the impact of noise is
negligible, the minimum Frobenius norm method is outper-
formed by the dual-rail implementation Mdr. This result
can be explained by noting that, in the low-noise regime,
rescaling the measurement matrix M0 induces mainly a
noise amplification effect at the reconstruction stage and
hence a shift to the left of the PSNR curve. However, since
the PSNR saturates when the noise power is approaching
zero, this shift does not affect the overall performance.

V. CONCLUSIONS
A simple design approach for linear projection measure-

ments in CS has been studied. The method is applicable
to incoherent optical imaging systems and aims at enabling
reliable image reconstruction from low dimensional pro-
jection measurements. The proposed method represents a
way to effectively adapt a given measurement design to the
particular constraints imposed by the physical limitations of
the incoherent optical system. It is based on the evaluation
of projections onto the canonical simplex of Rm, that can
be efficiently computed by using fast algorithms in the
literature. This approach is shown to manifest encouraging
gains in terms of mutual information between the input
source and the measurements, both with respect to random
projections and adaptive kernel designs based on dual rail-
implementations. Finally, test data on a natural image show
the advantage obtained with this method in terms of recon-
struction PSNR, for a wide range of noise levels.
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