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ABSTRACT

We model the compressible signal with the two states Gaussian mix-
ture distribution and consider the sample distortion function for the
recently proposed Bayesian optimal AMP decoder. By leveraging
the rigorous analysis of the AMP algorithm, we are able to derive the
theoretical SD function and a sample allocation scheme for multi-
resolution statistical image model. We then adopt the ”turbo” mes-
sage passing method to integrate the bandwise sample allocation
with the exploitation of the hidden Markov tree structure of wavelet
coefficients. Experiments on natural image show that the combina-
tion outperforms either of them working alone.

Index Terms— Sample distortion function, Bayesian optimal
AMP, Turbo decoding, Sample allocation

1. INTRODUCTION

There has recently been much attention on analysing the compressed
sensing (CS) problem from the statistical perspective. In the stochas-
tic setting, the signals are drawn from a probability distribution that
is in some sense compressible. In many situations, it is reasonable to
assume the statistical property is known. Such Bayesian compressed
sensing framework has been considered in terms of signal estimation
and measurement matrix design in [1], [2], [3]. In [4] we introduced
the notion of sample distortion (SD) function and consider the SD
function for the Gaussian encoder-`1 decoder. By extending the SD
function to a multi-resolution statistical image model, we are able to
derive the optimal bandwise sample allocation scheme and predict
the approximation performance for a given undersampling ratio.

In this paper we adopted the same SD framework [4] and con-
sider the SD function for the recently proposed approximate mes-
sage passing (AMP) [3] decoder and Gaussian mixture (GM) dis-
tribution for the signal model. AMP admits a rigorous analysis in
the large-limit system which naturally provides us with the theoreti-
cal SD function given the signal distribution [5]. We further modify
the AMP decoder by exploiting the convexity property of the SD
function and achieve a better SD curve lies below the one for the
conventional AMP decoder. The convexified SD function enables
us to perform a greedy sample allocation to optimize the bandwise
sampling.

Because the marginal statistics of the wavelet coefficients are
not significantly compressible [6], we should incorporate other de-
pendencies to maximise the SD performance. The second part of
the paper considers leveraging Som and Schniter’s recently proposed
TurboAMP [7] algorithm to exploit both the sparsity and the persis-
tence across scale (PSA) property [8]. The advantage of modelling
the wavelet coefficients with the GM distribution is that the hidden
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states form a quad-tree structure [9]. As in [7], we use the ”turbo”
message passing scheme to alternate between the AMP decoding and
tree structure decoding. But unlike their work, we use an optimized
block diagonal sensing matrix derived from the theoretical SD func-
tion instead of distributing samples uniformly. By integrating the
bandwise sampling and the turbo decoding scheme, we expect the
accurate message acquired from the coarse-scale wavelet bands will
propagate to the fine-scale bands through the hidden Markov tree
HMT structure and thus enhance the reconstruction quality. The nat-
ural image simulation confirms the analytical improvement.

2. SAMPLE DISTORTION FRAMEWORK

Suppose X ∈ Rn is a realization of a random vector, X :=
[x1, · · · , xn]T , i.i.d ∼ p(x). In compressed sensing, we observe
the linear combination of the source Y = ΦX through the measure-
ment matrix, or the encoder Φ ∈ Rm×n,m < n. Let the decoder
∆ : Rm → Rn be some Lipschitz mapping that estimates the
original signal from the observation. The squared error distortion
between X and ∆(ΦX) at undersampling ratio δ is

D∆(δ) =
1

n
E||X −∆(ΦδX)||22 (1)

Theorem 1. Define the Sample Distortion (SD) function for the
source X as the minimum achievable distortion over all encoder-
decoder pairs (Φ,∆) for a fixed undersampling ratio δ. Then the SD
function is convex.

Proof : Consider two achievable SD points (δ1, D(δ1)) and (δ2,
D(δ2)). To prove the SD function is convex, we only need to show
the convex combination of the two points is also achievable. Let
δt = tδ1 + (1 − t)δ2, 0 ≤ t ≤ 1. To sample the source X ∈ Rn
at the undersampling ratio δt, we could split X into two parts X =
[X1, X2]T , where X1 ∈ Rtn, X2 ∈ R(1−t)n, and apply encoders
with undersampling ratio δ1, δ2 to X1, X2 respectively. Then the
reconstruction ofX1 andX2 has achievable MSE: tnD(δ1) and (1−
t)nD(δ2). So the MSE of the reconstruction of X is:

nD(δt) = tnD(δ1) + (1− t)nD(δ2) (2)

Then we have

D(tδ1 + (1− t)δ2) = tD(δ1) + (1− t)D(δ2) (3)

Through a slight abuse of terminology, we will also use the term
SD function to refer to the undersampling ratio for which specific
encoders and decoders can achieve a certain distortion level. The
remainder of the paper considers p(x) as the two states GM model:

p(x|s) = p(s = 1)N (x; 0, σ2
L) + p(s = 0)N (x; 0, σ2

S)

= λN (x; 0, σ2
L) + (1− λ)N (x; 0, σ2

S) (4)

And we will investigate the SD function for a Gaussian encoder-
Bayesian optimal AMP (BAMP) decoder pair.
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Fig. 1: SD functions for GM data p(x) = 0.38 N (0, 1.198) +
0.62 N (0, 0.004) and lower bounds

2.1. SD function of i.i.d Gaussian mixture source

It is shown in [10] that when p(x) is available, the generic AMP
algorithm can be tuned optimally by using the conditional expecta-
tion as the soft thresholding function and the conditional variance
for the threshold level. [11] has also shown that the asymptotic MSE
for BAMP is well defined for the Gaussian random sensing matrix
through a one variable density evolution (DE) formalism, thus pro-
viding a theoretical basis for the SD function. We summarize the DE
function for BAMP in Table1.

To compute the DE prediction (theoretical SD function) for GM
distribution, we only need to derive F (·) in the formula. Given the
white Gaussian noise model of Y , we have p(Y |X) = N (Y ;X, c).
With straightforward calculation, the prior of Y is

p(Y ) = λN (Y ; 0, c+ σ2
L) + (1− λ)N (Y ; 0, c+ σ2

S) (5)

Combining the definition of the conditional mean with p(Y ), it can
be shown that [7]

F (ξ; c) =
αL + αSτ(ξ)

1 + τ(ξ)
ξ (6)

τ(ξ) = ε exp(−κξ2) (7)

where

αL :=
σ2
L

c+ σ2
L

αS :=
σ2
S

c+ σ2
S

ε :=
1− λ
λ

√
c+ σ2

L

c+ σ2
S

κ :=
σ2
L − σ2

S

2(c+ σ2
L)(c+ σ2

S)

Plugging in (6), we can formally track the evolution of the mean
squared error. It is illustrated in Fig. 1 that the asymptotic SD
function matches well with the Monte Carlo simulation for the GM
source. Close observation of the SD function for BAMP reveals that
for undersampling ratio δ < δc, there is an better convexified SD
curve by applying Theorem 1: the convex combination of the trivial
decoder (x = 0) and the BAMP decoder at the crucial undersam-
pling ratio δc. It indicates that instead of sampling the sourceX with
Φ ∈ RδN×N , we could simply throw away a portion of the source
(1 − k)X , k = δ/δc, and sample the rest kX with Φ ∈ RδN×kN

to achieve better MSE performance. The resulting convexified SD
curve is also shown in Fig. 1.
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Fig. 2: DR function of 6 bands Haar wavelet decomposition of cam-
eraman image (including the low-pass band)

Definitions: X ∼ p(X), W ∼ N (0, c), Y = X +W
F (ξ; c) = E(X|Y = ξ)

Density Evolution: D0 = E(X2), Z ∼ N (0, 1)
for k = 1, 2, 3, · · ·
Dk+1 = D0 − E[XF (X + Z

√
Dk
δ

; Dk
δ

)]

end

Table 1: The DE equation for Bayesian optimal AMP algorithm [11]

For the GM model it is possible to derive a model based bound
(MBB) that is tighter than our previous sample distortion lower
bound (SDLB) [4]:

DMBB(δ) =

{
(1− λ)σ2

S + (λ− δ)σ2
L 0 ≤ δ ≤ λ

(1− δ)σ2
S λ < δ ≤ 1

(8)

Assume the hidden states are available for both encoder and decoder.
We can partition X into two different Gaussian groups according to
S: X1 i.i.d ∼ N (0, σ2

L) and X2 i.i.d ∼ N (0, σ2
S). The MBB

for GM data consists of two linear parts corresponding to the lower
bound of the two Gaussian sources [4]. We plot both DSDLB and
DMBB for a GM distribution in Fig. 2.

2.2. SD function and sample allocation for natural images

we begin by introducing a multi-resolution statistical model for nat-
ural images. The wavelet decomposition of an image f(x), x ∈
[0, 1]2 has the form [8]

f =
∑
k

µi,kφi,k +
∑
j≥i,k

ωj,kψj,k (9)

where µi,k are the scaling coefficients at scale i and ωj,k are the
wavelet coefficients at scale j. We denote the group of wavelet co-
efficients at scale i, i + 1, · · · as band 0, band 1· · · for simplicity.
The scaling coefficients are treated as Gaussian since they exhibit
no sparsity. We model the wavelet coefficients as mutually indepen-
dent and impose the GM distribution for each wavelet band. To be
specific, ωj,k at scale j follows

p(ωj,k) = λj,kN (0, σ2
L,j) + (1− λj,k)N (0, σ2

S,j) (10)

We restrict ourself to a block diagonal encoder which samples
different wavelet band separately:

Φ = diag(Φ0,Φ1,Φ2, · · · ) (11)
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where Φi ∈ Rmi×ni ,mi ≤ ni makes mi measurements of the ni
wavelet coefficients at the ith band. The equality holds when the ith
band is fully sampled with Φi being an identity matrix. Otherwise
Φi is a Gaussian random matrix. To derive the SD function for multi-
resolution images, we need to optimize the sample allocation under
the sample budget constraint m = δn =

∑
imi ,with the aim of

minimizing the total reconstruction distortion. We follow the ideas
presented in [4] and use a distortion reduction (DR) function for each
wavelet band:

d(i)(mi) := ni[D((mi − 1)/ni)−D(mi/ni)] (12)

where mi = 1 · · ·ni. Assuming mi − 1 samples have been allo-
cated to the ith band, d(i)(mi) is the amount of distortion decreased
by adding one more sample to that band. The solid line in Fig. 2
is the DR function for a 6 band image model. With the convexified
SD function, the optimal bandwise sampling is achieved by progres-
sively allocating samples to the band which provides the greatest
distortion reduction. Thus the distortion of the multi-resolution im-
age at undersampling ratio δ is the signal energy subtracting the total
distortion reduction achieved by the optimal sample allocation.

3. SAMPLE ALLOCATION WITH TREE STRUCTURE

Until now we have assumed independence of the wavelet bands.
In this section we combine Som and Schinter’s recently proposed
TurboAMP algorithm [7] with our sample allocation to exploit both
the sparsity and the intrinsic persistence across wavelet scales. Let
Ω = [ω0, ω1, · · · , ωL] denote the wavelet coefficients vector parti-
tioned into different subsets according to the band index and S =
[s0, s1, · · · , sL] the corresponding hidden states vector. Assume
Y = [y0, y1, · · · , yL] is the collection of CS observation of the
block diagonal sensing matrix. In the Bayesian compressed sensing
setting, the reconstruction of Ω from Y is interpreted as computing
the expectation of the posterior p(Ω|Y ). To exploit the wavelet de-
pendency across bands, we model S with the HMT structure. Then
the posterior pdf has the form:

p(Ω|Y ) =
∑
S

L∏
j=0

p(ωj |yj , S)p(S) (13)

=

L∑
j=0

1

zj

∑
S

p(S)

nj∏
k=1

p(ωj,k|sj,k)

mj∏
t=1

p(yj,t|ωj) (14)

where zj ensures the normalization
∫
p(ωj |yj) = 1. This compli-

cated global function can be visualized using a factor graph [12] in
Fig. 3. Since exact computation of p(Ω|Y ) is NP hard due to the
loopy structure, we split the factor graph along the dashed line into
two decoupled subgraphs as in [7], to calculate the marginal posteri-
ors p(ωj,k|yj). To be specific, we exchange the local belief of sj,k
between AMP decoding and HMT decoding alternately, by treating
the likelihood on sj,k from one subgraph as prior for the the other
subgraph. The key feature of our factor graph is for the AMP de-
coding part, the sensing procedure is bandwise independent rather
than a mixture of all the wavelet coefficients. For the fully sampled
wavelet band (e.g. band 0), it is reasonable to assume we also have
the correct information of the hidden states so that it could propa-
gate to the partially sampled bands (e.g. band 1, band 2) through the
HMT and help with the decoding procedure.

One thing worth noticing here is that the SD function in section
2 is derived by assuming uniformed hidden states information E[λj ]
for all the wavelet coefficients in band j. Therefore it will not predict

band 0 band 1 band 2

s1,4

ω0,i ω1,4

ω1,2

s1,1

s1,2
s1,3

ω1,1

ω1,3

HMT

AMP

s0,i

Fig. 3: Factor graph for bandwise sampling with HMT decoding

correctly and guarantee the least distortion when combined with the
HMT decoding. Because the purpose of HMT decoding is to provide
AMP with a good estimation of λj,k for every wavelet coefficient
through the quad-tree structure, thus enhance the reconstruction. We
propose an empirical SD curve which takes account of the hidden
states. We still use the Gaussian random matrix as the encoder and
BAMP as the decoder. Only this time we provide the decoder with
extra soft information of the hidden states λ̂j,k when we run the DE
iterations

λ̂j,k =
N (ωj,k; 0, σ2

j,L)

N (ωj,k; 0, σ2
j,L) +N (ωj,k; 0, σ2

j,S)
(15)

The empirical SD function given ”true” hidden states information
is plotted in Fig. 1. The corresponding DR function for multi-
resolution image model is shown in Fig. 2. To clarify the notation,
we denote the independent model based sample allocation as SA and
the sample allocation using the soft information of hidden states as
SISA.

We now make a few comments. First, we note that the soft infor-
mation SD curve lies very close to the MBB but has a smoother tran-
sition around δ = E[λ], which means BAMP is able to almost fully
recover the signal with a number of measurements that approaches
the theoretical limit providing the full statistical information. Sec-
ond, both SA and SISA are suboptimal for the turbo scheme. SA
tends to put very few or no samples to the last wavelet band consid-
ering it contains the least energy when treated independently. It un-
derestimates the effect of the reconstruction quality of the last band
on other bands through the HMT structure. In contrast SISA is too
optimistic in assuming that the HMT decoding is able to retrieve the
true hidden state information thus it tends to put too many samples
to the fine-scale band. The optimal sample allocation for turbo de-
coding must have the merit of both SA and SISA.

4. NATURAL IMAGE EXAMPLE

We take the 256× 256 cameraman image as a prototypical example
and use the statistical properties of its Haar and db2 wavelet decom-
position to define the image model parameters. Table 2 is the esti-
mation of the GM distribution parameters for 6 wavelet bands us-
ing EM algorithm. These parameters were used to define the multi-
resolution statistical model, generate the SD function as well as the
DR function shown in Fig. 2. Let us consider the sample allocation
for 4 different undersampling ratios: 10%, 15.26%, 25% and 30%
associated with m = 6554, 10000, 16384, 19661 noiseless mea-
surements. We evaluate the performance of three different sample
allocations: SA, SISA, and an empirically optimised sample alloca-
tion, or ESA. Based on the SA result, we manually moved a min-
imum of 100 samples from other bands to the last band each time
to balance the total distortion. The ESA is the best manipulation
result for turbo decoding in terms of the reconstruction distortion.
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Fig. 4: SDR plot for Haar wavelet representation of cameraman

subband scaling band 0 band 1 band 2 band 3 band 4

Haar
λ 1 0.3752 0.3805 0.3559 0.3214 0.2642
σ2
L 261.5539 3.9188 1.1984 0.2757 0.0630 0.0141
σ2
S 0.0806 0.0044 0.0006 0.0002 0.0001

db2
λ 1 0.4155 0.5309 0.4842 0.3664 0.2792
σ2
L 261.4383 4.4215 0.8542 0.1856 0.0453 0.0115
σ2
S 0.3331 0.0038 0.0004 0.0002 0.0001

Table 2: Statistics for the Haar and db2 wavelet of cameraman

Fig. 6 is the sample arrangement for the cameraman Haar wavelet
coefficients. Note that for all three sample allocations, the scaling
coefficients and the root wavelet coefficients (band 0) are always
fully sampled before other wavelet bands are partially sampled or
not sampled at all. The sample allocation for db2 wavelet follows
the same pattern. To implement TurboAMP [7], we initialized the
activity rate with the λ reported in Table 2 for each band. The hy-
perparameters for the transition matrix were set in accordance with
the values described in [7]. For turbo scheme with sample alloca-
tion, we use the soft information λ̂j,k if band j is fully sampled and
E[λj ] if it is partially sampled. For both TurboAMP and turbo with
sample allocation, we ran 20 turbo iterations, within which 50 AMP
iterations were performed. We compared the numerical results for
the following decoding scheme: BAMP with uniform distribution
of samples (BAMP+Uni), BAMP+SA, TurboAMP, TurboAMP+SA,
TurboAMP+ESA and TurboAMP+SISA. The results are plotted in
Fig. 4 and Fig. 5 for Haar wavelet and db2 wavelet respectively.
First we observed that the theoretical SD prediction for BAMP+SA
is reinforced by the experimental evaluation on the cameraman im-
age. Secondly, it is not surprising to see BAMP+Uni performs the
worst since it does not exploit any wavelet property. Between Tur-
boAMP and BAMP+SA, TurboAMP performs relatively poorly un-
der small sampling ratios δ = 10%, 15%, while beats BAMP+SA
when δ equals to 25% and 30%. It highlights the importance of the
sample allocation when there is a tight budget of samples. It also
confirms that given enough samples, the HMT structure working co-
operatively with the AMP decoding benefits the reconstruction.

Unsurprisingly, the combination of turbo scheme and sample al-
location generally delivers better reconstruction results than either
of the two strategies working alone. The advantage of the coopera-
tion is more obvious for small sampling ratios. For δ = 10%, Tur-
boAMP+SA has relatively 2.5dB SDR gain over TurboAMP for both
Haar wavelet and db2 wavelet. For δ = 15%, 25% and 30%, there
is an average gain of 1dB. We also observed that although the Tur-
boAMP+ESA has the best performance among all, it only slightly
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Fig. 5: SDR plot for db2 wavelet representation of cameraman

improves the reconstruction over the TurboAMP+SA. When we are
extremely lack of samples (e.g δ = 10%), we should ensure enough
samples to the the coarse-scale bands. Any movement of samples to
the fine-scale bands will jeopardise the whole reconstruction since
the energy of the coarse bands dominates the whole image. Even
when we have the luxury of manipulating samples to the last band
benefiting from the tree structure decoding, the improvement is lim-
ited because of the exponential decay of energy across wavelet scale.

5. CONCLUSION

In this paper we present the sample distortion framework for GM
distribution signal using the Bayesian optimal AMP algorithm. By
expanding the concept of SD function to the multi-resolution statis-
tical image model, we derive an optimized bandwise sampling strat-
egy with the aim of minimizing the reconstruction distortion. While
the advantage and importance of bandwise sampling of CS has been
illustrated by Tsaig [13] as the two-gender hybrid CS, we provide a
quantitative method with sound theoretical basis to predict and as-
sess the achievable performance. The optimised bandwise sampling
is related to the work in [14], where the authors aim to maximise
information content. Here, in contrast, we derive a rigorous BAMP
based sample allocation to minimize distortion. We build upon the
turbo decoding scheme [7] to incorporate the tree structure image
model with the bandwise sampling and present improvement in re-
construction quality. Although the sample allocation based on in-
dependent model is theoretically suboptimal for turbo decoding, the
numerical simulation suggests it is very close to the manually best
achievable performance.

Fig. 6: Sample allocation per band for Haar wavelet.
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