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ABSTRACT

The reconstruction of a diffusion field, such as temperature,
from samples collected by a sensor network is a classical in-
verse problem and it is known to be ill-conditioned. Previ-
ous work considered source models, such as sparse sources,
to regularize the solution. Here, we consider uniform spatial
sampling and reconstruction by classical interpolation tech-
niques for those scenarios where the spatial sparsity of the
sources is not realistic. We show that even if the spatial band-
width of the field is infinite, we can exploit the natural low-
pass filter given by the diffusion phenomenon to bound the
aliasing error.

Index Terms— Diffusion equation, initial inverse prob-
lems, spatial sampling, aliasing error, interpolation.

1. INTRODUCTION

Sensor networks are often deployed to sense a phenomenon
that can be described by a physical model. Knowing this
model may allow a reduction of the quantity of measurements
or an improvement of their quality. However this approach
raises many challenges. For example, the theory of multidi-
mensional sampling assumes homogeneous and interchange-
able dimensions but for most physical fields, space and time
are not equivalent.

In this paper, we assume that the sensor network is sens-
ing a diffusive field, that is a solution of the following partial
differential equation (PDE)

∂f(x, t)

∂t
− ∂2f(x, t)

∂x2
= g(x, t), (1)

where f(x, t) is the field1 and g(x, t) represents the source of
diffusive material. The field is uniquely defined by (1) and
the opportune boundary conditions, such as the value of the
initial distribution f(x, 0) or the value at certain locations.

Even if the mathematical model of a diffusive field is
rather simple, it can model efficiently many real world sce-
narios: temperature in solid bodies, pollution dispersion [3],
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Frontier Research – SPARSAM Nr: 247006.

1Note that the diffusivity coefficient γ is unitary for simplicity’s sake. For
a different γ, we consider a scaling of the temporal axis, t′ = γt.

Fig. 1. Examples of diffusive fields. Left: the NO2 concentra-
tion over Europe on a weekday during winter [1]. Right: the
temperature distribution in a commercial 8 core processor [2].
Note that the sources of these two fields are not sparse.

atmospheric plumes [4], and temperature distribution in a
server room [5], to name a few. Recently, the temperature
estimation in solid bodies showed its importance for thermal
management of multi–core processors [2].

These applications often require the solution of an inverse
problem. Generally speaking, an inverse problem is the in-
ference of certain properties of the field, such as the initial
distribution or the actual distribution, from a limited num-
ber of observations. The first known inverse problem of the
diffusion equation goes back to Fourier and Kelvin [6], who
tried to estimate the initial temperature of the Earth from the
current temperature distribution. Unfortunately, it is known
that many inverse problems involving the diffusion equation
are severely ill–conditioned [7]. Recent works considered the
spatial sparsity of the initial distribution as a regularization
techniques. For example, Nehorai et al. [8] studied the detec-
tion and the localization of a single vapor-emitting source by
a maximum likelihood estimator. Lu and Vetterli introduced
two different approaches to the reconstruction of a sparse
source distributions driving the diffusion field based on spa-
tial super-resolution [9], and on an adaptive spatio–temporal
sampling scheme [10]. An approach using compressed sens-
ing on a discrete grid was proposed by Ranieri et al. [11] and
it was generalized to the real line by Dokmanić et al. [12].

Unfortunately, in some practical scenarios we are often in-
terested in recovering the actual field and not the source term
and/or the spatial sparsity assumption for the initial distribu-
tion is not realistic. For example, when monitoring the tem-
perature of a processor we would like to recover the actual
thermal map and the temperatures sources are distributed, see
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Fig. 2. (a) An initial distribution f(x, 0) (blue) and the diffusive field f(x, t0) (green) at a certain time t0. (b) The power
spectrum of the two fields with the respective confidence interval. Note the significant decrease of power for the frequencies
above 20Hz for the diffusive field, leading to a significant reduction of the aliasing error.

Figure 1. A solution based on a finite elements has been intro-
duced for the Poisson PDE by van Waterschoot et al. in [13],
while a distributed algorithm has been proposed in [14].

Motivated by these considerations, we consider the fol-
lowing question: “how many spatial measurements should
be collected to reconstruct exactly a diffusion field at a given
time t?”. We propose the following setup: the diffusive field
is uniformly sampled in space and we recover the field using
a classic result, the Shannon’s sampling theorem [15]. The
famous theorem states that a signal f(t) with bandwidth B
is described completely by a set of its samples {f(nT )}n,
where T ≤ 1

2B . If the signal is not bandlimited, a proper low–
pass filter should be considered ahead of sampling to avoid
aliasing error. However, if we try to apply this theory to spa-
tial sampling of diffusive fields we may face two problems:

• The spatial bandwidth is infinite. In fact, given a field
f(x, t0) at a fixed time instant t0 the support of the
Fourier transform (FT) F [f(x, t0)] is not finite,

• It is physically impossible to apply a spatial low–pass
filter on the field before sampling. Therefore, it is rea-
sonable to expect a significant aliasing error.

In Section 2, we show that even if the bandwidth of any
diffusive field is theoretically infinite, the magnitude of the FT
decays sufficiently fast. In Section 3, we derive upper bounds
for the aliasing error. We conclude the paper with numerical
results to support our theoretical findings.

2. SPATIAL BANDWIDTH OF A DIFFUSIVE FIELD

The study of the spatial bandwidth of a diffusion field is com-
plicated by the fact that the bandwidth changes over time. In
what follows, we consider three simplified scenarios:

• a point source appearing at a known time,
• a generic distribution appearing at a known time,
• a spatially localized time–varying source.

2.1. A Point Source

Let us assume that at t = 0 we have a Dirac’s delta in x = 02,
that is f(x, 0) = δ(x) and that this source diffuses as time
passes on an infinite domain. It is well known that the field
evolves as

f(x, t) = k(x, t) =
1√
4πt

exp

{
−x2

4t

}
. (2)

The solution is also known as the kernel k(x, t), or alterna-
tively the Green’s function, of the diffusion equation and has
a fundamental importance in determining the solution of dif-
fusion equations with more complicated source terms. The
FT of (2) for t > 0 is

k̂(ω, t) = exp
{
−tω2

}
, (3)

where ω are the spatial frequencies and the hat indicates the
FT as in the rest of the paper. If we define the bandwidth as
the difference between the upper and the lower frequencies of
the set where (3) is different from zero, we have an infinite
bandwidth. However, the magnitude decreases exponentially
fast with ω2 and t.

2.2. An initial distribution

If we consider an initial distribution f(x, 0) that diffuses in
free space, the field is the convolution between the initial dis-
tribution and the kernel given in (2). Therefore, in the Fourier
domain we have the following multiplication,

f̂(ω, t) = f̂(ω, 0)k̂(ω, t). (4)

Given the Gaussian profile of k̂(ω, t) and the asymptotic be-
havior of f̂(ω, 0), see the Riemann-Lebesgue lemma [16], the

2Note that a different source location does not influence the magnitude of
the FT of the field, being just a constant phase term.
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bandwidth of f̂(ω, t) is equivalent to the one of the initial
distribution f̂(ω, 0). Moreover, the spectrum is increasingly
low-passed with t until the field has constant value at t→∞.
See Figure 2 for an example of initial distribution smoothed
by the diffusion kernel and the respective spectrums.

2.3. A Time–varying Source

Now, we assume that the source g(x, t) of the field is spatially
located at x = 0 and its amplitude is time-varying, that is

g(x, t) = δ(x)g(t). (5)

The source is diffusing on an infinite domain and we assume
that it is diffusing since t = −∞. According to the theory of
linear PDEs, the field f(x, t) evolves in time and space as,

f(x, t) =

∫ t

−∞

∫ ∞
−∞

k(x− s, t− τ)g(s, τ)dsdτ,

which is the convolution in space and time with the diffusion
kernel given in (2). First, we consider the spatial integral and
we exploit the property of the Dirac’s delta,

f(x, t) =

∫ t

−∞
k(x, t− τ)g(τ)dτ.

Then, we look at the spatial FT to compute the spatial band-
width of the diffusive field,

f̂(ω, t) =

∫
R
f(x, t) exp {−iωx} dx

=

∫ t

−∞

1√
4π(τ − t)

g(τ)

∫
R
exp

{
− x2

4(t− τ)
− iωx

}
dxdτ

= exp
{
−tω2

}∫ t

−∞
exp

{
τω2

}
g(τ)dτ. (6)

More information can be obtained if we consider partic-
ular functions g(t). For example, if g(t) = δ(t) we obtain
again (3). If we consider a sinusoid at a frequency ω0 as a
source term, that is

g(t, ω0) = sin(w0t),

then the diffusive field induced by a sinusoid evolves with t
in the Fourier domain as

f̂(ω, ω0, t) =
ω2 sin(ω0t)− ω0 cos(ω0t)

ω4 + ω2
0

. (7)

We may remove the time–dependency of (7)

f̂(ω, ω0) ≤ max
t
f̂(ω, ω0, t) =

1√
ω4 + ω2

0

. (8)

From this analysis of the FT of diffusive fields, we would like
to underline an important aspect. The diffusive phenomena
is characterized by the exp{−tω2} term. It acts as a natu-

ral low–pass filter, whose cutoff frequency is decreasing with
time. Therefore, we can expect to sample and successfully
reconstruct a diffusive field with a bounded aliasing error. We
study this aspect in the following section.

3. SAMPLING AND RECONSTRUCTION USING
SHANNON’S THEOREM

In this section, we study the sampling and the reconstruction
of diffusive fields using Shannon’s theorem. In particular,
we are interested in the number of sensors that are needed
to achieve a certain aliasing error.

Let us assume that we have a sensor network deployed
with a spatial density of 2ωs that spatially samples the dif-
fusive field f(x, t) at a given time t. The FT of the samples
f̂s(ω, t) is the periodic repetition of (3) with period ωs,

f̂s(ω, t) =
∑
k∈Z

f̂(ω − kωs).

Let us define the aliasing error ε as the `2-norm of the differ-
ence between f̂(ω, t) and f̂s(ω, t) for ω ∈

{
−ωs

2 ,
ωs

2

}
,

ε(ωs, t) =

∫ ωs
2

−ωs
2

|f̂(ω, t)− f̂s(ω, t)|2dω. (9)

Given the Gaussian profile of f̂(ω), we may expect that the
aliasing error exponentially decreases with the sampling den-
sity ωs and the time t. This intuition is confirmed by the fol-
lowing upper bound of the aliasing error.

Proposition 1. Let us consider a diffusive field generated by
a point source appearing at t0 = 0 spatially sampled at time
t with a density 2ωs. Even if the bandwidth of the field is
infinite, the aliasing error can be upper bounded as:

ε(ωs, t) ≤
√
π

2t
Erfc

(
ωs

√
t

2

)
.

Proof. First, we simplify the aliasing error using Cauchy
Schwarz inequality and an opportune change of variable as,

ε(ωs) =

∫ ωs
2

−ωs
2

∣∣∣∣∑
k 6=0

f̂(ω − kωs)

∣∣∣∣2dω
≤
∑
k 6=0

∫ ωs
2

−ωs
2

|f̂(ω − kωs)|2dω

= ‖F (ω)‖2 −
∫ ωs

2

−ωs
2

|F (ω)|2dω, (10)

where we omitted the time dependency of the aliasing error
for simplicity’s sake. Then, we plug in the FT of the field
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Fig. 3. Example of reconstructions at different times of a diffusive field generated by an initial distribution (blue). (a) The
field (green) at t = 0.01 and its reconstruction (red) from 25 samples. ε(0.01) ≈ 0.199 (b) The field (green) at t = 1 and
its reconstruction (red) from 25 samples, where ε(0.01) ≈ 0.0039. Note that in the second case the reconstruction error is
significantly reduced due to the low-pass effect of the diffusion phenomena. (c) Comparison between the error bound computed
in Proposition 1 and the average error computed over 100 random signals.

given in (3),

ε(ωs, t) ≤ 2

∫ ∞
ωs
2

exp{−2ω2t}dω =

√
π

2t
Erfc

(
ωs

√
t

2

)
,

where the complementary error function is defined as
Erfc(x) =

∫∞
x

exp{−ω2}dω.

Since Erfc is upper bounded by a Gaussian, the aliasing
error decays exponentially fast with ωs and t. Therefore, even
if the bandwidth is technically infinite, we can always sample
a diffusion field and make the aliasing error as small as de-
sired.

A similar result can be obtained for time-varying point
sources defined in (5). When we consider a sinusoid at a fre-
quency ω0, the diffusion field in the spatial Fourier domain is
maximized as (8). This expression decays quickly w.r.t. ω2

and indicates that even if the bandwidth is theoretically in-
finite, we can again upper bound the aliasing error. This is
subject of the following proposition.

Proposition 2. Let us consider a diffusive field generated by
a single sinusoidal source located at x = 0 with a frequency
ω0, then the bandwidth of the field is infinite. However, the
aliasing error, that is defined in (9), can be approximatively
upper bounded as follows,

ε(ωs) ≤
π − 2 arctan

(
ωs√
2ω0

)
√
2ω0

3
,

where ωs is the spatial sampling frequency.

Proof. Given the limited available space and the amount of
computations necessary to show the result, we just sketch the
proof. We plug the maximizer of f̂(ω, ω0) (8) into the aliasing
error upper bound (10),

ε(ωs, ω0) ≤
π√
2ω0

3
−
∫ ωs

2

−ωs
2

1

w4 + w2
0

dω. (11)

The integral in (11) is lower bounded for ωs � ω0 as∫ ωs
2

−ωs
2

1

w4 + w2
0

dω ≥

√
2

ω3
0

arctan

(
ωs√
2ω0

)
,

proving the result.

4. NUMERICAL RESULTS

We present a series of numerical experiments showing the im-
pact of time (and therefore of bandwidth) in the sampling and
the reconstruction of diffusion fields. We choose a random
initial distribution and we let it diffuse for a time t before we
sample it in space. We reconstruct the field using classical
sinc interpolation. An example of the signals we consider and
their reconstruction is given in Figure 3a and 3b. Note that
the reconstruction is more precise when t is large because of
the lower bandwidth. In Figure 3c, we show the average alias-
ing error for 100 random signals and the error bound given in
Proposition 1. Being a bound for the worst case scenario, it is
almost two orders of magnitude larger than the real aliasing
error. Nonetheless, it follows the same decay.

5. CONCLUSION

We studied the problem of sampling and reconstructing dif-
fusive field from a classical point of view: uniform spatial
sampling followed by sinc interpolation. First, we obtained
reliable characterizations of the spatial spectrum of diffusive
fields generated by three different source types: point sources,
distributions at known times and sinusoidal sources. Even if
the bandwidth of the fields is infinite, the spectrum magni-
tude decays sufficiently fast to allow a faithful reconstruc-
tion. Therefore, we derived upper bounds for the aliasing
error that show an exponential decay (or quadratic for time-
varying sources) of the error w.r.t. a linear increase of the
spatial sampling density.
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