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ABSTRACT

Dictionary learning algorithms design a dictionary that is specifically
tailored to enable sparse representation of a given set of training sig-
nals. In turn, the increased sparsity of the signals with respect to this
dictionary enables significantly improved performance in a variety
of state-of-the-art signal processing tasks, e.g. compressive sensing.
However, while these algorithms typically assume that all training
data is fully available, this may not be the case in practice. In fact,
the high cost of acquiring each signal or the sheer amount of data
to be acquired may motivate us to take a compressive sensing (CS)
approach, taking only a few CS measurements of each signal. In
this paper, we present a novel algorithm for learning a dictionary on
a set of training signals using only compressive sensing measure-
ments of them. Our proposed algorithm is a generalization of the
well-known K-SVD algorithm and preserves its convergence prop-
erties. Experimental results on synthetically generated data verify
that our proposed algorithm can recover the generating dictionary
atoms from CS measurements alone (so long as enough measure-
ments of enough training signals are available), even for the case
of noisy measurements. Finally, we show that compressive K-SVD
(CK-SVD) can also be used to aid in signal reconstruction and com-
pressive classification on the CS measurements.

Index Terms— Dictionary learning, K-SVD, Sparse represen-
tation, Compressive sensing, Compressive classification

1. INTRODUCTION
In recent years, there has been increasing interest in developing al-
gorithms for learning a dictionary based on a given set of training
signals. The goal is to learn a dictionary that leads to a sparse repre-
sentation for each signal in the set. While choosing a predetermined
dictionary (i.e. wavelets/DCT) is simpler, this signal-adaptive dic-
tionary learning typically leads to a much more compact represen-
tation. In fact, the increased sparsity enabled by dictionary learning
has been revolutionizing performance in many state-of-the-art signal
processing tasks such as compression, feature extraction, classifica-
tion, image denoising, and compressive sensing. As an illustrative
example, wavelet-based compression and denoising strategies have
been very successful in the past due to how sparsely images can be
represented in the wavelet domain. However, recent results show
that denoising using a dictionary learned from patches of a noisy
image leads to huge gains in performance over even wavelets [1].

The method of optimal directions (MOD) [2] and K-SVD [3]
are two well-known algorithms for learning a dictionary from a set
of training signals. Both of these are simple but efficient iterative
algorithms that alternate between sparse coding and dictionary up-
date steps to find the dictionary allowing the best possible sparse
representation for each signal in the set. Moreover, the K-SVD al-
gorithm has been shown to converge quickly [3] and to outperform
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other dictionary learning algorithms in practice leading to improved
performance in many image processing applications.

One important application of dictionary learning is compressive
sensing. Compressive sensing (CS) aims to allow reconstruction of
signals that are sparse in some basis from a small number of mea-
surements. Various algorithms for signal recovery from CS mea-
surements have been introduced [4, 5, 6], but typically, the perfor-
mance of these algorithms, e.g. `1-minimization, crucially relies on
the sparsity of the signals of interest. Hence, a more compact repre-
sentation for the signals leads to huge gains in performance, improv-
ing the reconstruction accuracy or reducing the required number of
CS measurements.

Because of this, there have been some initial attempts at dictio-
nary learning directly from CS measurements [7, 8, 9]. For example,
the previous work in [7] and [8] tries to estimate principal compo-
nents of the training data from CS measurements alone. Indeed, in
[8] it has been observed that performing normal principal compo-
nent analysis (PCA) on low-dimensional random projections of data
is a simple and effective approach that produces the same result as
performing PCA on the original data.

However, sparse representation algorithms like K-SVD typically
give a much more compact representation than that obtained through
PCA, which is typically not very sparse. This strongly motivates us
to develop an algorithm for designing a dictionary that can sparsely
represent the data using the CS measurements.

In this paper, our goal is to present such an algorithm for learn-
ing a dictionary based on a given set of CS measurements. Our
proposed algorithm, compressive K-SVD, is a generalization of the
well-known K-SVD algorithm. More precisely, our algorithm is an
iterative approach that alternates between sparse coding and dictio-
nary update steps to minimize the error in representation of the CS
measurements.

Furthermore, experimental results verify that our proposed algo-
rithm can recover the generating dictionary atoms of both synthetic
and real-world datasets from CS measurements alone. Moreover, the
dictionary obtained from our proposed algorithm can then be used to
greatly improve the reconstruction accuracy of each data point from
its CS measurements. It can also be used for classification of signals
based on CS measurements of them [10].

In Section 2, we review the original K-SVD algorithm briefly.
Section 3 presents our proposed algorithm, compressive K-SVD, in
detail, with discussion on convergence of the algorithm. In Section
4, we show experimental results that verify the performance of our
proposed algorithm for learning dictionaries on both synthetic and
real-world datasets. We also explore two important applications of
our proposed algorithm: (1) signal recovery and (2) signal classifi-
cation based on the CS measurements.

2. REVIEW OF THE K-SVD ALGORITHM
Given a set of n training signals Y = [y1, . . . ,yn] in Rp, a dictio-
nary D ∈ Rp×d that leads to the best representation under a strict
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sparsity constraint for each member in the set is obtained by mini-
mizing the following representation error

min
D,X
‖Y −DX‖2F subject to ∀i,

∥∥∥x(i)
∥∥∥
0
≤ T (1)

where X =
[
x(1), . . . ,x(n)

]
is the coefficient matrix corresponding

to the training signals Y and
∥∥∥x(i)

∥∥∥
0

counts the number of nonzero

entries of the coefficient vector x(i) ∈ Rd. Solving this optimization
problem may lead to an exact representation for the ith signal yi

such that yi = Dx(i) or each yi may be well-approximated by the
learned dictionary, satisfying

∥∥∥yi −Dx(i)
∥∥∥
2
≤ ε for some small ε.

In [3], an iterative algorithm, K-SVD, was presented that alter-
nates between sparse coding of the signals with respect to a fixed
dictionary and the process of updating dictionary atoms. The main
advantages of this algorithm are its simplicity, efficiency, and fast
convergence with respect to other previously proposed dictionary
learning methods. Indeed, the sparse coding step is common be-
tween different dictionary learning methods, so the process of up-
dating dictionary atoms is the main topic of interest. In the sparse
coding step, the optimization problem in (1) is solved with respect
to a fixed D to find the best coefficient matrix X. The penalty term
in (1) can be written as

‖Y −DX‖2F =

n∑
i=1

∥∥∥yi −Dx(i)
∥∥∥2
2

(2)

Minimizing (2) with respect to x(1), . . . ,x(n) can be solved as n
distinct optimization problems for each signal yi in the set as follows

min
x(i)

∥∥∥yi −Dx(i)
∥∥∥2
2

subject to
∥∥∥x(i)

∥∥∥
0
≤ T (3)

Finding the sparsest solution x(i) is an NP-hard problem, but the ap-
proximate solution can be obtained by pursuit algorithms such as the
simple greedy algorithm orthogonal matching pursuit (OMP) [11]
used in K-SVD.

The main contribution of the K-SVD algorithm is the dictionary
update process which minimizes the penalty term in (1) using a sim-
ple iterative approach. This penalty term can be written as

‖Y −DX‖2F =

∥∥∥∥∥∥
Y −

∑
j 6=k

d(j)xj
T

− d(k)xk
T

∥∥∥∥∥∥
2

F

=
∥∥∥Rk − d(k)xk

T

∥∥∥2
F

(4)

where d(j) is the jth dictionary atom, xj
T is the correspond-

ing coefficients for it for each signal (the jth row of X), and
Rk = Y−

∑
j 6=k d

(j)xj
T is the representation error for the training

signals when the kth dictionary atom is removed. In the dictio-
nary update process, it is assumed at each step k that d(j) and xj

T ,
j 6= k, are fixed. We then minimize the criterion over d(k) and
x
(k)
T which is equivalent to finding the best rank-1 approximation of

Rk. The minimizer might typically be obtained by applying SVD
to the matrix Rk, but the strict sparsity constraint also must be con-
sidered. Therefore, in the K-SVD algorithm, we shrink the matrix
Rk by eliminating columns corresponding to those training signals
for which x

(i)
k = 0 and then find the best rank-1 approximation of

the shrunken Rk to update d(k) and x
(k)
T . This strategy preserves

the support of the coefficient matrix X. Indeed, joint optimization
of the dictionary atoms and the corresponding coefficients in the
dictionary update step leads to a much more efficient minimization
of (4) compared to other dictionary learning methods.

3. COMPRESSIVE K-SVD
In this section, we present our proposed compressive K-SVD algo-
rithm (CK-SVD). Given a set of CS measurements for n training
signals {mi}ni=1 in Rm, the goal is to find a dictionary D ∈ Rp×d

that leads to the best possible representation for the original training
signals Y under the strict sparsity constraint.

The universal CS measurement matrix is the random Gaussian
matrix with each entry drawn i.i.d from N (0, 1). Let Ei ∈ Rp×m

denote the measurement matrix used for the ith training signal.
Then, each measurement vector can be written as follows

mi = ET
i yi ∈ Rm for i = 1, 2, . . . , n (5)

It is very important to consider different measurement matrices for
different training signals here. Otherwise, by projecting all the train-
ing signals onto one low-dimensional random subspace, the original
signal space is lost, and we will not be able to find the sparse repre-
sentation model for the original training signals.

We assume that the dictionary model is D = BA where B is a
fixed matrix and the matrix A is the atom representation dictionary
[12]. The matrix B can contain some prior knowledge about the
training signals, e.g. principal components of them learned through
another method, or it can be the identity matrix. In this model, the ith
column of A denoted by a(i) corresponds to the ith dictionary atom
d(i) = Ba(i), for i = 1, 2, . . . , d. Therefore, each measurement
vector mi is

mi = ET
i yi = ET

i BAx(i) for i = 1, . . . , n (6)
A generalization of the objective function in (1) for the case that we
have access only to the CS measurements is to seek the dictionary D
that leads to the best representation for the CS measurements, rather
than the original signals, under the strict sparsity constraint. Our pro-
posed objective function thus becomes a well-defined penalty term
that measures the quality of our sparse representation in terms of the
only information available from the original data. This leads to the
criterion:

min
A,X

n∑
i=1

∥∥∥mi −ET
i BAx(i)

∥∥∥2
2

subject to ∀i,
∥∥∥x(i)

∥∥∥
0
≤ T

(7)
Clearly, for Ei = Ip×p , i = 1, . . . , n, this objective function re-
duces to the usual K-SVD criterion. Solving the optimization prob-
lem in (7) will give us the atom representation dictionary A and
the corresponding dictionary D = BA such that yi = Dx(i) or∥∥∥yi −Dx(i)

∥∥∥
2
≤ ε for some small ε.

In our proposed CK-SVD algorithm, the penalty term in (7) is
minimized in a simple iterative approach, similar to K-SVD’s, that
alternates between sparse coding and dictionary update steps.

3.1. Sparse Coding
In the sparse coding step, the penalty term in (7) is minimized with
respect to a fixed A to find the best coefficient matrix X under the
strict sparsity constraint. This can be written as

min
X

n∑
i=1

∥∥∥mi −Ψix
(i)
∥∥∥2
2

subject to ∀i,
∥∥∥x(i)

∥∥∥
0
≤ T (8)

where Ψi = ET
i BA is a fixed equivalent dictionary for represen-

tation of the ith measurement vector mi. This optimization prob-
lem can be considered as n distinct optimization problems for each
measurement vector. We can then use OMP to find the approximate
solution x(i) similar to the K-SVD algorithm.
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3.2. Dictionary Update
Assume that the a(j), j 6= k and coefficients xj

T , j 6= k are fixed.
The goal is to update the kth dictionary atom, or equivalently a(k),
and its corresponding coefficients sequentially for k = 1, . . . , d.
The penalty term in (7) can be written as

n∑
i=1

∥∥∥mi −ET
i BAx(i)

∥∥∥2
2

=

n∑
i=1

∥∥∥∥∥mi −ET
i B

d∑
j=1

a(j)x
(i)
j

∥∥∥∥∥
2

2

=

n∑
i=1

∥∥∥∥∥∥
mi −ET

i B
∑
j 6=k

a(j)x
(i)
j

−ET
i Ba(k)x

(i)
k

∥∥∥∥∥∥
2

2

=
∑
i∈Ik

∥∥∥M (i)
k −ET

i Ba(k)x
(i)
k

∥∥∥2
2

+
∑
i/∈Ik

∥∥∥M (i)
k

∥∥∥2
2

(9)

where x
(i)
k is a scalar corresponding to the coefficient of the kth

dictionary atom in the representation of mi with respect to Ψi, Ik
is a set of indices of measurement vectors using the kth dictionary
atom defined as follows

Ik =
{
i| 1 ≤ i ≤ n, x(i)

k 6= 0
}

(10)

and M (i)
k is the representation error for the ith measurement vector

when the kth dictionary atom is removed. Because the Eis are dis-
tinct this problem cannot be solved by SVD as before. However, the
penalty term in (9) is a quadratic function of a(k) and the minimizer
is obtained by setting the derivative of the penalty term with respect
to a(k) equal to zero to obtain

BT

∑
i∈Ik

(
x
(i)
k

)2
EiE

T
i

Ba(k) = BT

∑
i∈Ik

x
(i)
k EiM

(i)
k


(11)

Defining the matrix Gk and the vector bk as follows

Gk , BT

∑
i∈Ik

(
x
(i)
k

)2
EiE

T
i

B

bk , BT

∑
i∈Ik

x
(i)
k EiM

(i)
k

 (12)

we thus find that the update of the kth column of matrix A, a(k), is
obtained by

a(k) = G+
k bk (13)

Given the new a(k), the optimal x(i)
k for each i ∈ Ik is given by

least squares as follows. It is clear that the support of the coefficient
matrix X is preserved as in the K-SVD algorithm.

x
(i)
k =

〈M (i)
k ,ET

i Ba(k)〉
‖ET

i Ba(k)‖22
(14)

3.3. Convergence of the CK-SVD Algorithm
In the sparse coding step, optimization of the penalty term in (8)
leads to a reduction in MSE conditioned on the success of the OMP
algorithm. Furthermore, in the dictionary update process, each dic-
tionary atom and its corresponding coefficients are updated by min-
imizing quadratic functions, and then these updates are used for up-
dating the rest of the dictionary atoms. Therefore, a monotonic re-
duction in MSE is guaranteed. Since MSE is bounded from below
by zero, we can conclude that, conditional on OMP’s success, con-
vergence to a local minimum is guaranteed. We typically run a few
times initializing the matrix A to a few different initial random ma-
trices to avoid getting stuck in a local minima.

Input: CS measurement vectors {mi}ni=1, CS measurement matrices
{Ei}ni=1, matrix B, sparsity level T , number of dictionary atoms d.
Initialization: matrix A, set J = 1.
Procedure: Repeat untill convergence (or maximum number of iterations)

1. Sparse Coding Step: For each i = 1, . . . , n

• Ψi ← ET
i BA

• x(i) ← arg minx(i)

∥∥mi −Ψix
(i)
∥∥2 s.t.

∥∥x(i)
∥∥
0
≤ T

2. Dictionary Update Step: For each k = 1, . . . , d

• Ik ←
{
i| 1 ≤ i ≤ n, x

(i)
k 6= 0

}
• For each i ∈ Ik:

M
(i)
k ←

(
mi −ET

i B
∑

j 6=k a(j)x
(i)
j

)
• Gk ← BT

(∑
i∈Ik

(
x
(i)
k

)2
EiE

T
i

)
B

bk ← BT
(∑

i∈Ik x
(i)
k EiM

(i)
k

)
• a(k) ← G+

k bk

• x
(i)
k ←

〈M(i)
k

,ET
i Ba(k)〉

‖ET
i Ba(k)‖2

• J ← J + 1.

Output: Atom representation dictionary A.

Fig. 1: The Compressive K-SVD Algorithm.

4. EXPERIMENTAL RESULTS
In this section, we demonstrate the effectiveness of our proposed al-
gorithm for both synthetic and real-world datasets. First, we repeat
the synthetic data experiment of [3]. We generate a random matrix
D of size 50 × 10 with i.i.d entries drawn from the N (0, 1). This
matrix, which is also known as the generating dictionary, contains
10 random vectors in R50, each normalized to have unit `2-norm. A
set of training signals {yi}ni=1 is generated where each element in
this set is a linear combination of three distinct generating dictionary
atoms chosen uniformly i.i.d from the generating dictionary, and the
corresponding coefficients are chosen i.i.d from the normal distribu-
tion N (0, 80). Then, each training signal yi is projected onto an
m-dimensional random subspace using the measurement matrix Ei

leading to CS measurements.
CK-SVD is then applied on the set of CS measurements to learn

the generating dictionary atoms of the original training signals. The
maximum number of iterations is set to 100 except for the case
where we have very few training signals, n = 100, where it is set
to 200. In fact, increasing the number of training signals increases
convergence speed. The matrix B is set to the identity matrix and the
matrix A is initialized with a random matrix of size 50×10 with i.i.d
entries drawn from the N (0, 1) distribution. To reduce the chance
of getting stuck in local minima, we use 5 different initializations for
A to run the algorithm and choose the one with the minimum value
of the objective function in (7).

To evaluate the performance of CK-SVD, after learning dic-
tionary atoms and normalizing them to unit `2-norm, we measure
the correlation between each generating dictionary atom and all the
learned dictionary atoms. If the absolute value of the correlation is
greater than 0.98 for one or more learned atoms, we say that the
corresponding generating dictionary atom is detected. Fig. 2 shows
the results obtained by applying CK-SVD on 50 independent trials
for varying measurement ratios m/p, and varying number of signals
n. Also, the average normalized representation error for all the train-

5471



0.1 0.2 0.3 0.4 0.5
0

2

4

6

8

10

Measurement Ratio m/p

M
ea

n 
N

um
be

r 
of

 D
et

ec
te

d 
A

to
m

s

 

 

n=100
n=200
n=500
n=1000

(a)

0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Measurement Ratio m/pM
ea

n 
N

or
m

al
iz

ed
 R

ep
re

se
nt

at
io

n 
E

rr
or

 

 

n=100
n=200
n=500
n=1000

(b)

Fig. 2: Results for synthetic data. (a) Plot of the mean number of
detected atoms in 50 trials for varying n and m/p. (b) Plot of mean
normalized representation error of the training signals in 50 trials for
varying n and m/p.

0.1 0.2 0.3 0.4 0.5
0

2

4

6

8

10

Measurement Ratio m/p

M
ea

n 
N

um
be

r 
of

 D
et

ec
te

d 
A

to
m

s

 

 

n=100
n=200
n=500
n=1000

(a)

0.1 0.2 0.3 0.4 0.5
0

2

4

6

8

10

Measurement Ratio m/p

M
ea

n 
N

um
be

r 
of

 D
et

ec
te

d 
A

to
m

s

 

 

n=100
n=200
n=500
n=1000

(b)

Fig. 3: Results for noisy CS measurements. Plot of mean number of
detected atoms in 10 trials for the case that (a) SNR = 50 dB, and
(b) SNR = 30 dB.

ing signals after decomposing each signal with respect to the learned
dictionary D̃, 1/n

∑
i
‖yi−D̃x(i)‖2/‖yi‖2, is plotted in Fig. 2b. Note

that CK-SVD is able to recover almost all the generating dictionary
atoms for sufficiently many training signals or CS measurements.

For effective real-world data acquisition, our recovery must also
be robust to noisy CS measurements. Therefore, we consider the
case where our CS measurements are corrupted by white Gaussian
noise as, mi = ET

i yi + ni, for i = 1, . . . , n. In Fig. 3, results for
applying CK-SVD on noisy CS measurements for varying signal-to-
noise ratios (SNR), varying measurement ratios, and varying number
of signals are shown. All the parameters are set as in the previous
case and the maximum number of iterations is set to 100. We see that
CK-SVD is robust in the case of noisy CS measurements, recover-
ing the generating dictionary atoms very well from the CS measure-
ments.

Recently, there has been growing interest in developing algo-
rithms to perform other signal processing tasks such as classification
in addition to recovery on CS measurements. To verify the practical-
ity of our proposed approach, CK-SVD is applied on the real-world
USPS dataset. The USPS dataset contains ten classes of handwrit-
ten digits with size 16 × 16 (p = 256). We assume known training
labels but undersampled training data as in [10]. We thus take CS
measurements of a randomly chosen 500 samples from each class
and apply CK-SVD on them to learn a dictionary for that class. The
maximum number of iterations is set to 100, number of dictionary
atoms is set to d = 50, and the sparsity level is set to T = 20. In
Fig. 4b, 5 samples from each of the ten classes of the learned dic-
tionary atoms are shown. It is clear that CK-SVD can successfully
recover dictionary atoms from the CS measurements. We have also
used the learned dictionary for each class to recover signals from the
CS measurements using the OMP recovery method [6]. The recov-
ery results in Fig. 4c indicate that the dictionary learned using CK-
SVD can lead to huge gains for signal recovery, compared to using a

(a) Samples (b) The Learned Dictionary

Original Image With CK-SVD

MSE=609

ℓ
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MSE=4712
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(c) CS Recovery
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(d) Classification

Fig. 4: Results for the USPS dataset. (a) Samples from the USPS
dataset. (b) Samples from the learned dictionary atoms using CK-
SVD on ten classes of the USPS dataset for the measurement ra-
tio m/p = 0.5. (c) Reconstruction accuracy comparison of OMP
using the CK-SVD learned dictionary and `1-minimization using
Daubechies 8 wavelets. (d) Plot of classification accuracy for K-
SVD on the data versus CK-SVD on the CS measurements.

non-signal adaptive dictionary such as wavelets . Finally, we explore
an application of CK-SVD to classification of signals based on CS
measurements. After learning the dictionaries for all ten classes, we
decompose the measurement vector of each testing sample with re-
spect to Ψi = ET

i D for all the learned dictionaries. Then, we label
each testing sample as that class that leads to the minimum represen-
tation error for the measurement vector. Fig. 4d compares the clas-
sification accuracy for K-SVD on the original data versus CK-SVD
on the CS measurements. As we can see, classification accuracy for
the K-SVD strategy is extremely high (∼ 0.95), and for measure-
ment ratio m/p = 0.5, the classification accuracy gets very close to
that obtained with access to the full training data. This shows that
this classification strategy can be implemented on CS measurements
instead of the full data without much loss of performance.

5. CONCLUSIONS
We have presented a method for learning a dictionary that enables
a sparse signal representation using only compressive sensing mea-
surements of the signals. Our method successfully recovered the
generating dictionary for a synthetically generated dataset, even for
the cases of measurement-to-original-dimension ratios as low as 0.3,
low number of training samples, and noisy measurements. Addition-
ally, we were able to learn a convincing set of dictionary atoms for
the USPS handwritten digit dataset, and to use these dictionaries to
facilitate improved signal reconstruction and compressive classifica-
tion. We foresee the application of our dictionary learning method to
improving compressive sensing results in a variety of signal process-
ing tasks, as well as to learning signal dictionaries in other inverse
problem settings, which we hope to explore in future work.
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