
SPARSE SIGNAL RECOVERY FROM NONLINEAR MEASUREMENTS

Amir Beck

Faculty of Industrial Engineering and Management
Technion, Haifa, Israel
becka@ie.technion.ac.il

Yonina C. Eldar

Faculty of Electrical Engineering
Technion, Haifa, Israel

yonina@ee.technion.ac.il

ABSTRACT

We treat the problem of minimizing a general continuously dif-
ferentiable function subject to sparsity constraints. We present
and analyze several different optimality criteria which are based
on the notions of stationarity and coordinate-wise optimality.
These conditions are then used to derive three numerical al-
gorithms aimed at finding points satisfying the resulting opti-
mality criteria: the iterative hard thresholding method and the
greedy and partial sparse-simplex methods. The theoretical con-
vergence of these methods and their relations to the derived op-
timality conditions are studied.

1. INTRODUCTION

Sparsity has long been exploited in signal processing, statistics
and computer science. Recent years have witnessed a growing
interest in algorithms for sparse recovery [3, 2, 16]. Despite the
great interest in exploiting sparsity in various applications, most
of the work to date has focused on recovering a sparse vector
x ∈ Rn from linear measurements of the form b = Ax. For
example, the rapidly growing field of compressed sensing [7, 6,
10] considers recovery of a sparse x from a small set of linear
measurements b ∈ Rm where m ≪ n.

In this paper we study the more general problem of minimiz-
ing a continuously differentiable objective function subject to a
sparsity constraint. More specifically, we consider the problem

(P): min f(x) s.t. ∥x∥0 ≤ s

where f : Rn → R is a continuously differentiable function
which we assume throughout is lower bounded, s > 0 is an in-
teger smaller than n and ∥x∥0 is the ℓ0 norm of x, which counts
the number of nonzero components in x. We do not assume
that f is convex. This, together with the fact that the constraint
function is nonconvex, and is not even continuous, renders the
problem quite difficult. Our goal is to study necessary optimal-
ity conditions for problem (P) and develop algorithms that find
points satisfying these conditions for general f .

Two examples of (P) that have been considered previ-
ously are compressed sensing and phase retrieval. As noted
above, compressed sensing is concerned with recovery of a
sparse vector x from linear measurements Ax = b, where
A ∈ Rm×n,b ∈ Rm and m ≪ n. When noise is present
in the measurements, it is natural to consider problem (P) with
fLI(x) ≡ ∥Ax − b∥2. A variety of algorithms have been pro-
posed to approximate the solution to this problem [15, 16]. One
approach is to replace the ℓ0 norm with the convex ℓ1 norm.
Greedy methods are also popular, such as the matching pursuit
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(MP) and orthogonal MP (OMP) algorithms [12]. Another tech-
nique that is related to our approach below is the iterative hard
thresholding (IHT) algorithm [5]. In [5] the authors consider a
majorization-minimization approach to solve (P) with f = fLI.
In Section 3.1 we show how this approach can be applied to
the general formulation (P ), and discuss the quality of the limit
points of the sequence generated by the algorithm.

Although linear measurements are pervasive, recently, at-
tention has been given to quadratic measurements. Sparse re-
covery problems from quadratic measurements arise in a variety
of different problems in optics, including sub-wavelength optical
imaging [8, 14] and phase retrieval. Quadratic compressed sens-
ing was recently proposed in [14], where the goal is to recover
a sparse vector x from noisy quadratic measurements: ci ≈
xTAix. The resulting problem can be written as in (P) with
fQU(x) ≡

∑m
i=1

(
xTAix− ci

)2
. In this case, the objective

function is nonconvex and quartic. In phase retrieval problems,
a vector x is to be recovered from the magnitude of its mea-
surements yi = |d∗

ix|. Denoting by bi the corresponding noisy
measurements, the goal is to minimize

∑m
i=1(b

2
i−|d∗

ix|2)2 sub-
ject to ∥x∥0 ≤ s for some s. In [14], an algorithm was devel-
oped to treat such problems based on a semidefinite relaxation,
and low-rank matrix recovery. Similar approaches were recently
proposed in [9, 13]. However, for large scale problems, these
methods are inefficient and difficult to implement.

In this paper we present a uniform approach to treating
problems of the form (P). In Section 2 we derive 3 classes of
necessary optimality conditions: basic feasibility, L-stationarity,
and coordinate-wise (CW) optimality. We then show that CW-
optimality implies L-stationarity for suitable values of L, and
they both imply basic feasibility. In Section 3 we present two
classes of algorithms for solving (P). The first is a generalization
of IHT, and is based on the notion of L-stationarity. The second
class of methods are based on the concept of CW-optimality.
These are coordinate descent type algorithms which update
the support at each iteration by one or two variables. Due to
their resemblance with the celebrated simplex method for linear
programming, we refer to these methods as “sparse-simplex”
algorithms. As we show, these algorithms are as simple as IHT,
while obtaining stronger optimality guarantees.

Throughout the paper we state our results without proofs;
detailed proofs of the theorems can be found in [1].

2. NECESSARY OPTIMALITY CONDITIONS

Throughout, we denote by xR the subvector of x corresponding
to the indices in R. The support set of x is defined by I1(x) ≡
{i : xi ̸= 0} , and its complement is I0(x) ≡ {i : xi = 0} . We
denote the set of s-sparse vectors by Cs = {x : ∥x∥0 ≤ s}. The
ith largest absolute value component in x is denoted by Mi(x),
so that in particular M1(x) = maxi=1,...,n |xi| and Mn(x) =
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mini=1,...,n |xi|.

2.1. Basic Feasibility

As a first step in studying (P), we consider its optimality con-
ditions, and then use them to generate algorithms. Since (P) is
nonconvex, it does not seem to posses necessary and sufficient
conditions for optimality. Therefore, we derive several neces-
sary conditions, and analyze the relationship between them. We
will then show in Section 3 how these conditions lead to algo-
rithms that are guaranteed to generate a point satisfying the re-
spective conditions.

For unconstrained differentiable problems, a necessary opti-
mality condition is that the gradient is zero. It is therefore natu-
ral to expect that a similar necessary condition will be true over
the support I1(x∗) of an optimal point x∗. Inspired by linear
programming terminology, we will call a vector satisfying this
property a basic feasible vector.

Definition 2.1. A vector x∗ ∈ Cs is called a basic feasible (BF)
vector of (P) if:

1. when ∥x∗∥0 < s, ∇f(x∗) = 0;

2. when ∥x∗∥0 = s, ∇if(x
∗) = 0 for all i ∈ I1(x

∗).

Theorem 2.1. Let x∗ be an optimal solution of (P). Then x∗ is
a BF vector.

It turns out that BF is a weak necessary condition, namely,
there are many BF points that are not optimal points. We next
consider stricter necessary optimality conditions.

2.2. L-Stationarity

In this subsection we consider L-stationarity, which is an exten-
sion of the concept of stationarity for convex constrained prob-
lems. We begin by recalling some well known concepts on opti-
mality for convex constrained differentiable problems [4].

Consider a problem of the form min{g(x) : x ∈ C} where
C is a closed convex set and g is a continuously differentiable
function, which is possibly nonconvex. A vector x∗ ∈ C is
called stationary if

⟨∇g(x∗),x− x∗⟩ ≥ 0 for all x ∈ C. (2.1)

If x∗ is an optimal solution of (P), then it is also stationary.
Therefore, stationarity is a necessary condition for optimality.
It is often useful to use the property that for any L > 0, a vector
x∗ is a stationary point if and only if

x∗ = PC

(
x∗ − 1

L
∇g(x∗)

)
, (2.2)

where for a closed subset D ⊆ Rn, PD(y) ≡ argmin
x∈D

∥x−y∥2.

It is natural to try and extend (2.1) or (2.2) to the nonconvex
(feasible set) setting. Condition (2.1) with g = f and C =
Cs is actually not a necessary optimality condition so we do
not pursue it further. To extend (2.2) to the sparsity constrained
problem (P), we introduce the notion of “L-stationarity”.

Definition 2.2. A vector x∗ ∈ Cs is called an L-stationary
point of (P) if it satisfies the relation

[NCL] x∗ ∈ PCs

(
x∗ − 1

L
∇f(x∗)

)
. (2.3)

Below we will show that under an appropriate Lipschitz con-
dition, L-stationarity is a necessary condition for optimality. We
first describe a more explicit representation of [NCL].

Lemma 2.1. For any L > 0, x∗ satisfies [NCL] if and only if
∥x∗∥0 ≤ s and

|∇if(x
∗)|

{
≤ LMs(x

∗) if i ∈ I0(x
∗),

= 0 if i ∈ I1(x
∗).

(2.4)

A direct result of Lemma 2.1 is the following:

Corollary 2.1. Suppose that x∗ is an L-stationary point for
some L > 0. Then x∗ is a BF point.

In general, L-stationarity is not a necessary optimality con-
dition for problem (P). To establish such a result, we need to
assume a Lipschitz continuity property of ∇f :

∥∇f(x)−∇f(y)∥ ≤ L(f)∥x− y∥ for every x,y ∈ Rn.
(2.5)

This assumption holds for f = fLI with L(f) = 2λmax(A
TA),

but not for f = fQU. We will not make this assumption through-
out the paper; it will be stated explicitly when needed.

Under (2.5) we now show that an optimal solution of (P) is
an L-stationary point for any L > L(f).

Theorem 2.2. Suppose that (2.5) holds, L > L(f) and let x∗

be an optimal solution of (P). Then

(i) x∗ is an L-stationary point.

(ii) The set PCs

(
x∗ − 1

L
∇f(x∗)

)
is a singleton.

To conclude this section, we have shown that under a Lip-
schitz condition on ∇f , L-stationarity for any L > L(f) is
a necessary optimality condition, which also implies the basic
feasibility property. In Section 3.1 we will show how IHT for
solving the general problem (P), can be used in order to find
L-stationary points (for L > L(f)).

2.3. Coordinate-Wise Minima

The L-stationarity condition has two major drawbacks: first, it
requires the gradient to be Lipschitz continuous and second, in
order to validate it, we need to know a bound on the Lipschitz
constant. We now consider a different and stronger necessary
optimality condition that does not even require (2.5) to hold.

For a general unconstrained optimization problem, a vector
x∗ is called a “coordinate-wise (CW)” minimum if for every
i = 1, 2, . . . , n the scalar x∗

i is a minimum of f with respect to
the ith component xi while keeping all other variables fixed:

x∗
i ∈ argmin f(x∗

1, . . . , x
∗
i−1, xi, x

∗
i+1, . . . , x

∗
n).

Clearly, any optimal x∗ is also a coordinate-wise minimum. It
is therefore natural to extend this definition to problem (P).

Definition 2.3. Let x∗ be a feasible solution of (P). Then x∗

is called a coordinate-wise (CW) minimum of (P) if one of the
following cases hold true:
Case I: ∥x∗∥0 < s and for every i = 1, 2, . . . , n one has:

f(x∗) = min
t∈R

f(x∗ + tei). (2.6)

Case II: ∥x∗∥0 = s and for every i ∈ I1(x
∗) and j =

1, 2, . . . , n one has:

f(x∗) ≤ min
t∈R

f(x∗ − x∗
i ei + tej). (2.7)

Based on this definition, we have the following result.

Theorem 2.3. Let x∗ be an optimal solution of (P). Then x∗ is a
CW-minimum of (P). Furthermore, if x∗ ∈ Cs is a CW-minimum
of (P), then x∗ is also a BF vector.
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We next show that being a CW-minimum is a stronger, i.e.
more restrictive, condition than being L-stationary for any L ≥
L(f). To state this result, we note that under (2.5), for any i ̸= j
there exists a constant Li,j(f) for which

∥∇i,jf(x)−∇i,jf(x+ d)∥ ≤ Li,j(f)∥d∥, (2.8)

for any x ∈ Rn and any d ∈ Rn which has at most two nonzero
components. Here ∇i,jf(x) denotes a vector of length-2 whose
elements are the ith and jth elements of ∇f(x). Define the local
Lipschitz constant:

L2(f) ≡ max
i ̸=j

Li,j(f).

Clearly (2.8) is satisfied when replacing Li,j(f) by L(f).
Therefore, in general, L2(f) ≤ L(f).

Theorem 2.4. Suppose that (2.5) holds and let x∗ be a CW-
minimum of (P). Then x∗ is an L2(f)-stationary point. Further-
more, any optimal solution of (P) is an L2(f)-stationary point.

3. NUMERICAL ALGORITHMS

We now develop two classes of algorithms that achieve the nec-
essary conditions defined in the previous section: Iterative hard
thresholding (IHT) and sparse-simplex methods.

3.1. The IHT Method

One approach for solving problem (P) is to employ the follow-
ing fixed point method in order to “enforce” the L-stationary
condition (2.3):

xk+1 ∈ PCs

(
xk − 1

L
∇f(xk)

)
, k = 0, 1, 2, . . . (3.1)

Convergence of this method can be shown when (2.5) holds;
we therefore make this assumption when using this approach.
The IHT method
Input: a constant L ≥ L(f).

• Initialization: Choose x0 ∈ Cs.
• General step : xk+1 ∈ PCs

(
xk − 1

L
∇f(xk)

)
For the case f ≡ fLI, and under the assumption that

∥A∥2 < 1, our algorithm coincides with IHT [5]. Our approach
extends this algorithm to the general case under (2.5).

The following theorem states that all accumulation points of
the sequence generated by the IHT method with constant step-
size 1

L
are indeed L-stationary points.

Theorem 3.1. Let {xk}k≥0 be the sequence generated by the
IHT method with stepsize 1

L
where L > L(f). Then any accu-

mulation point of {xk}k≥0 is an L-stationary point.

3.2. The Greedy Sparse-Simplex Method

The IHT method is able to find L-stationary points for any
L > L(f) under (2.5). However, by Theorem 2.4, any optimal
solution is also an L2(f)-stationary point, and L2(f) can be
significantly smaller than L(f). It is therefore natural to seek
a method that is able to generate such points. An even better
approach would be to derive an algorithm that converges to a
CW-minima, which by Theorem 2.4, is a stronger notion than
L-stationary. An additional drawback of IHT is that it requires
the validity of (2.5) and the knowledge of L(f).

Below we present the greedy sparse-simplex (GSS) algo-
rithm which overcomes the faults of IHT alluded to above: its
limit points are CW-minima, it does not require the validity of
(2.5), but if the assumption does hold, then its limit points are
L2(f)−stationary points (without the need to know any infor-
mation on Lipschitz constants).

The Greedy Sparse-Simplex Method
• Initialization: Choose x0 ∈ Cs.

• General step : (k = 0, 1, . . .)
• If ∥xk∥0 < s, then compute for every i = 1, 2, . . . , n

ti ∈ argmin
t∈R

f(xk + tei), (3.2)

fi = min
t∈R

f(xk + tei).

Let ik ∈ argmin
i=1,...,n

fi. If fik < f(xk), then set

xk+1 = xk + tikeik .

Otherwise, STOP.
• If ∥xk∥0 = s, then for every i ∈ I1(x

k) and j =
1, . . . , n compute

ti,j ∈ argmin
t∈R

f(xk − xk
i ei + tej), (3.3)

fi,j = min
t∈R

f(xk − xk
i ei + tej).

Let (ik, jk) ∈ argmin{fi,j : i ∈ I1(x
k), j =

1, . . . , n}. If fik,jk < f(xk), then set

xk+1 = xk − xk
ikeik + tik,jkejk .

Otherwise, STOP.

Theorem 3.2 establishes a convergence result for GSS:

Theorem 3.2. Let {xk} be the sequence generated by the
GSS method. Then any accumulation point of {xk} is a CW-
minimum of (P).

Combining Theorem 3.2 with Theorem 2.4 leads to the fol-
lowing corollary.

Corollary 3.1. Suppose that (2.5) holds and let {xk} be the
sequence generated by the GSS method. Then any accumulation
point of {xk} is an L2(f)-stationary point.

When f ≡ fLI, GSS is similar to MP. Specifically, it can be
readily shown that MP coincides with our algorithm as long as
the support is smaller than s. Our approach however has several
advantages:

• We do not need to initialize it with a zero vector. It is pos-
sible to improve its performance by using several starting
points and then choosing the solution with minimal ob-
jective function value;

• In MP once an index is added to the support it will gen-
erally not be removed. Our approach allows to remove
elements from the support under broad conditions, allow-
ing for an inherent “correction” scheme;

• In MP the algorithm stops once the maximal support is
achieved. In contrast, in our approach, further iterations
are made by utilizing the correction mechanism.

We note that once our method converges to a fixed support
set, it continues to update the values on the support. Ultimately,
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it converges to the least-squares solution on the support since in
this situation the method is a simple coordinate descent method
employed on a convex function. This is similar in spirit to the
OMP approach [11].

3.2.1. Examples

Example 3.1. Consider the sparse least squares problem

(P2) min{∥Ax− b∥2 : x ∈ C2},

where A ∈ R4×5 and b ∈ R4 are given by:

A =

0.889 −0.435 0.530 −0.232 0.374
0.079 −0.347 0.094 0.968 −0.491
0.442 0.324 0.692 0.092 0.757
0.077 0.764 −0.480 0.014 0.209

 ,b =

 1.325
0.427
0.117

−0.687

 .

The matrix A was constructed as follows: first, the compo-
nents were randomly and independently generated from a stan-
dard normal distribution, and then all the columns were normal-
ized. The vector b was chosen as b ≡ Axtrue, where xtrue =
(1,−1, 0, 0, 0)T . The problem has 10 BF vectors (correspond-
ing to the 5-choose-2 options for the support) and they are de-
noted by 1, 2, . . . , 10, where the first solution is the optimal so-
lution xtrue. We compared three methods: 1) the IHT method
with L1 = 1.1L(f) 2) the IHT method with L2 = 2L(f) 3) the
GSS method. Each algorithm was run 1000 times with differ-
ent randomly generated starting points. All the runs converged
to one of the 10 BF vectors. The number of times each method
converged to each of the BF vectors is given in Table 1.

BF 1 2 3 4 5 6 7 8 9 10
N1 329 50 63 92 229 0 130 0 61 46
N2 340 59 0 89 256 0 187 0 69 0
N3 813 0 0 112 0 0 75 0 0 0
N4 772 0 0 92 0 0 93 0 43 0

Table 1. Distribution of limit points among the 10 BF vec-
tors. N1, N2, N3, N4 are the amount of runs for which the IHT
method with L1, L2, the GSS and PSS algorithms (introduced
in Section 3.3) converged to the ith BF vector.

Note that as L gets larger, there are more non-optimal candi-
dates to which the IHT method can converge. The GSS method
exhibits the best results with more than 80% chance to converge
to the true optimal solution. This method will never converge to
the BF vectors 3, 6, 8 and 10 since they are not L2(f)-stationary
points. Moreover, there are only three possible BF vectors to
which the GSS method converged: 1, 4 and 7. The reason is
that among the 10 BF vectors, there are only three CW-minima.
This illustrates the fact that even though any CW-minimum is an
L2(f)-stationary point, the reverse claim is not true – there are
L2(f)-stationary points which are not CW-minima.

Example 3.2. We next compare the performance of MP and
OMP to that of GSS. To this end we generated 1000 realizations
of A and b as described in Example 3.1. We ran both MP and
OMP with s = 2. Each of these methods were considered “suc-
cessful” if it found the correct support (MP usually does not find
the correct values). GSS was run with an initial vector of all zero,
so that the first two iterations were identical to MP. The results
were the following: out of the 1000 realizations MP and OMP
found the correct support in 452 cases. The GSS method, which
adds “correcting” steps to MP, recovered the correct support in
652 instances.

An additional advantage of GSS is that it is capable of run-
ning from various starting points. We therefore added the fol-
lowing experiment: for each realization of A and b, we ran GSS
from 5 different initial vectors generated as in Example 3.1. If
at least one of these 5 runs detected the correct support, then
the experiment is considered successful. In this case the correct
support was found 952 times out of the 1000 realizations.

3.3. The Partial Sparse-Simplex Method

As we noted, the GSS method has several advantages over IHT.
On the other hand, the computational effort per iteration of the
GSS algorithm is larger than the one required by IHT. This com-
putational burden is caused by the fact that the method has no
index selection strategy. To overcome this drawback, we intro-
duce the partial sparse-simplex method (PSS). The only differ-
ence from the GSS algorithm is in the case when ∥xk∥0 = s,
where there are two options. Either perform a minimization
with respect to the variable in the support of xk which causes
the maximum decrease in function value; or replace the variable
in the support with the smallest absolute value (that is, substi-
tuting zero instead of the current value), with the non-support
variable corresponding to the largest absolute value of the par-
tial derivative – the value of the new non-zero variable is set by
performing a minimization procedure with respect to it. Finally,
the best of the two choices (in terms of objective function value)
is selected.

The limit points of PSS are not necessarily CW-minima.
However, when (2.5) holds, they are L2(f)-stationary points,
which is a better result than the one known for the IHT method.

Theorem 3.3. Suppose that (2.5) holds and let {xk} be the se-
quence generated by the PSS method. Then any accumulation
point of {xk} is an L2(f)-stationary point.

We now return to Example 3.1, and add a comparison to
PSS. As can be seen, the method performs very well, much bet-
ter than IHT. It is only slightly inferior to GSS (since it added BF
vector 9), despite the fact that each iteration is much cheaper.

Example 3.3. We now consider an example of quadratic equa-
tions. Given m vectors a1, . . . , am, our problem is to find a
sparse vector x ∈ Rn satisfying (aT

i x)
2 = ci. The prob-

lem can be formulated as problem (P) with f ≡ fQI where
Ai = aia

T
i . We compare GSS and PSS on an example with

m = 80, n = 120 and s = 3, 4, . . . , 10. Each component
of the 80 vectors a1, . . . ,a80 was randomly and independently
generated from a standard normal distribution. The true vec-
tor xtrue was generated by choosing randomly the s nonzero
components whose values were also randomly generated from a
standard normal distribution. The vector c was determined by
ci = (aT

i xtrue)
2. For each value of s, we ran GSS and PSS

from 100 different and randomly generated initial vectors. The
numbers of runs out of 100 in which the methods found the cor-
rect solution is given in Table 2.

s 3 4 5 6 7 8 9 10
NPSS 27 22 8 5 9 5 3 2
NGSS 73 69 20 19 13 8 6 3

Table 2. The second (third) column contains the number of runs
for which the partial (greedy) sparse-simplex method converged.

Note, that we can easily increase the success probability of
the algorithms by starting them from several initial vectors and
taking the best result.
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