
CAN WE ALLOW LINEAR DEPENDENCIES IN THE DICTIONARY
IN THE SPARSE SYNTHESIS FRAMEWORK?

Raja Giryes and Michael Elad

Department of Computer Science, Technion - IIT 32000, Haifa, ISRAEL.

ABSTRACT

Signal recovery from a given set of linear measurements us-
ing a sparsity prior has been a major subject of research in
recent years. In this model, the signal is assumed to have a
sparse representation under a given dictionary. Most of the
work dealing with this subject has focused on the reconstruc-
tion of the signal’s representation as the means for recovering
the signal itself. This approach forced the dictionary to be
of low coherence and with no linear dependencies between
its columns. Recently, a series of contributions that focus on
signal recovery using the analysis model find that linear de-
pendencies in the analysis dictionary are in fact permitted and
beneficial. In this paper we show theoretically that the same
holds also for signal recovery in the synthesis case for the ℓ0-
synthesis minimization problem. In addition, we demonstrate
empirically the relevance of our conclusions for recovering
the signal using an ℓ1-relaxation.

Index Terms— Sparse representations, compressed sens-
ing, analysis versus synthesis, inverse problems.

1. INTRODUCTION

Recovering a signal from a noisy set of linear measurements
appears in many problems such as compressed sensing, im-
age deblurring and super-resolution. In the basic setup an un-
known signal x0 ∈ Rd passes through a given linear transfor-
mation M ∈ Rm×d; an additive noise e ∈ Rm contaminates
the outcome, providing a set of linear measurements

y = Mx0 + e. (1)

The noise e can be assumed to be either an adversarial un-
known bounded noise such that ∥e∥2 ≤ ϵ or a random noise
with a given distribution, e.g., zero-mean white Gaussian
noise. In this paper we focus on the first case. The measure-
ment matrix M is usually either rectangular with m < d or an
ill-posed matrix with m = d. Thus, the information we have
in the measurement vector y is not enough for recovering x,
and additional prior knowledge is needed.
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The priors considered in this work are sparsity based ones
[1]. These include two main paradigms for modeling the sig-
nal – the synthesis and the analysis schemes [2]. In the syn-
thesis framework the signal x is assumed to have a sparse
representation α ∈ Rn under a given dictionary D ∈ Rd×n,

x0 = Dα0. (2)

Few words on our terminology: A vector α is said to be k-
sparse if ∥α∥0 ≤ k, where ∥·∥0 is the ℓ0 semi-norm that
counts the number of its non-zero elements, and a signal x
is said to have a k-sparse representation if there exists a k-
sparse α such that x = Dα. The columns of D are referred
to as atoms, the non-zero locations of a sparse vector α as the
support T , the size of this support is |T |, and the sub-matrix
of D with the atoms corresponding to T as DT . Given that x0

has a k-sparse representation, we can recover it from its mea-
surement y by looking for the sparsest vector α that satisfies
∥y −MDα∥2 ≤ ϵ (In the noiseless case, ϵ = 0).

The analysis framework models the signal differently.
Given a matrix Ω ∈ Rp×d – the analysis dictionary – we
are interested in the multiplication Ωx, referred to as the
analysis representation. A signal x is said to be ℓ-cosparse
if ∥Ωx∥0 ≤ p-ℓ, i.e., Ωx has ℓ zero elements. In this case
we recover the signal by looking for the most cosparse vector
x, i.e., the one with the largest number of zeros in Ωx that
satisfies ∥y −Mx∥2 ≤ ϵ. More details can be found in [3, 4].

Unlike the analysis model which works in the signal do-
main and thus recovers it directly, the synthesis one works in
the representation domain and thus recovers the signal indi-
rectly by recovering first its representation. Because of this,
most of the work that studies theoretical guarantees for the
synthesis framework give bounds for the representation’s re-
construction, or deal only with the case that D is unitary, for
which the two problems coincide [5, 6, 7, 8, 9, 10, 11, 12].

Results for more general dictionaries also exist [13, 14].
However, they require the dictionary to be highly incoherent
and with no linear dependencies between small number of its
columns. This requirement limits the types of dictionaries
that can be used to model the signal. While this constraint
is necessary for recovering the signal’s representation, it is
not clear that it is still required when our target is the signal.
The goal of this paper is to answer this very question. We
aim to show that highly-coherent and even linearly dependent
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atoms in D still enable a reliable recovery of the signal from
its measurements.

Recently, a series of works [15, 3, 4, 16, 17] showed that
in the analysis framework, where we aim at recovering the
signal directly, linear dependencies can be allowed in the
(analysis) dictionary. These correlations were even favored
as they were shown to improve the recovery performance of
the different techniques analyzed in these works.

Since linear dependencies are shown to give profit in the
analysis framework, it is conjectured that the requirement for
an incoherent dictionary for the signal recovery in the syn-
thesis framework is unnecessary as well. A clue for this very
property is given in [15], where the reconstruction conditions
are presented in terms of D-RIP which is a property of the
measurement matrix M for the synthesis model. However,
the results in [15] are derived for signals from the analysis
model, thus leaving our question unresolved as of yet.

In this work we focus on the synthesis model and ask: Is it
possible to have a recovery guarantee for the synthesis model
for a dictionary exhibiting linear dependencies within small
groups of its columns? In order to answer this question, we
study the performance of the ideal ℓ0-minimization problem

α̂ = argmin
α

∥α∥0 s.t. ∥y −MDα∥2 ≤ ϵ. (3)

This is the core approach for recovering a signal that is known
to have the synthesis sparsity prior. The reconstructed signal
in this technique is simply x̂ = Dα̂. In the noiseless case, (3)
turns to be simply

α̂ = argmin
α

∥α∥0 s.t. y = MDα. (4)

In this work we study the recovery performance of (3)
and (4). We first provide uniqueness conditions for the sig-
nal recovery in the noiseless case. Then we present stable
reconstruction conditions for the noisy case where the noise
is adversarial. This result is a particular case of the result pre-
sented in [18, 19] in which a more general form of the D-RIP
property was proposed giving stable recovery guarantee for
signals that come from a general union of subspaces model.

The uniqueness and stability conditions that we present
are generalization of previous results [20, 5, 6, 7, 8, 21] that
assume D to be incoherent. The contribution of this work is
in providing reconstruction guarantees in the signal domain
that do not pose incoherence requirement on the dictionary.

The ℓ0-minimization problem is known to be NP-hard
[22] and several approximation techniques have been sug-
gested to it [20, 5, 9, 10, 11, 12, 23, 24]. A future work
should extend the existing representation recovery guarantees
to the signal case. First steps in this direction have been taken
for the CoSaMP algorithm in [25]. However, the theoretical
study of this algorithm is impaired by the assumed existence
of a near-optimal projection scheme in the signal domain, an
assumption similar to the one posed in [4]. The existence of
such a projection in the general case is still an open question.

In addition to the theoretical study of the ℓ0-problem, in
this paper we show empirically that for the ℓ1-synthesis min-
imization problem, a relaxed version of (3) that replaces the
ℓ0-semi-norm with an ℓ1-norm, signal recovery is at hand in
the cases where D is highly coherent and the representation
recovery is impossible. Similar experiments has been per-
formed in [25] for the CoSaMP algorithm.

The organization of this paper is as follows. In Section 2
we survey existing uniqueness and stability guarantees for
the representation reconstruction using the ℓ0-minimization
problem. In Section 3 the previously presented results are
extended for the signal reconstruction case, allowing general
coherent dictionaries. Empirical reconstruction results for the
ℓ1-minimization problem are presented in Section 4, compar-
ing the representation and signal recovery in the case where
D is highly coherent. In Section 5 the work is summarized.

2. BACKGROUND - GUARANTEES FOR THE
REPRESENTATION RECOVERY

Two important properties that were explored for the ℓ0-
problem are the uniqueness of its solution and the stability of
the solution under bounded adversarial noise. In this section
we survey the existing results for representation recovery.
We present the results with no proofs, as they are already
contained in those of Section 3 for signal recovery.

2.1. Uniqueness

Given a signal’s representation α0 with a cardinality k
(∥α0∥0 ≤ k) we are interested to know whether it is the
unique solution of (4). In other words, whether there exists
another representation α1 ̸= α0 with a cardinality at most
k such that MDα0 = MDα1. An answer for this question
was given in [5] using the definition of the Spark of a matrix:

Definition 2.1 (Definition 1 in [5]) Given a matrix A we de-
fine Spark(A) as the smallest possible number of columns
from A that are linearly dependent.

This definition provides us with a sharp uniqueness condition
for the representation reconstruction:

Theorem 2.2 (Corollary 3 in [5]) Let y = MDα0. If
∥α0∥0 < Spark(MD)/2 then α0 is the unique solution
of (4).

Though this condition is sharp for finding the representation,
it is not sharp at all, in terms of finding the signal itself. This
can be demonstrated using the following simple example. Let
us assume that D = [z, z, . . . , z], a dictionary with columns
that are a duplicate of the same atom z. Clearly, the signal
x=z can be represented by any of the atoms of D, which
means that it has n different sparse representations, each with
cardinality 1. Thus, for any measurement matrix M there is
no unique solution to (4). Indeed, we have Spark(MD) = 2
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and the uniqueness condition collapses to the trivial require-
ment ∥α0∥0 = 0. However, it is clear that if our goal is to
recover the signal x (i.e. Dα) and not its representation α,
then we can certainly have a uniqueness, as all the possible
solutions to (4) lead to the same signal. Thus, we conclude
that for the task of estimating the signal itself, the existing
condition is not sharp and a better one should be explored.

2.2. Stability

In the case where noise exists in the measurement, the unique-
ness of the solution is no longer the question since we cannot
recover the original signal exactly. Instead, we ask whether
the reconstruction is stable, i.e., whether the ℓ2-distance be-
tween the estimated signal’s representation and the original
one is proportional to the noise power ϵ. In order to establish
that, we use the restricted isometry property (RIP) [7, 8]. The
RIP can be seen as an extension of the Spark, which allows
noisy case analysis.

Definition 2.3 A matrix A satisfies the RIP condition with
parameter δk if it is the smallest value that satisfies

(1− δk) ∥α∥22 ≤ ∥Aα∥22 ≤ (1 + δk) ∥α∥22 (5)

for any k-sparse vector α.

The connection between the RIP and the Spark is the follow-
ing. Given a matrix A, k < Spark(A) if δk < 1 [8]. Having
the RIP it is straight forward to have a stability condition for
the representation reconstruction using (3).

Theorem 2.4 Let y = MDα0 + e where ∥e∥2 ≤ ϵ, MD
satisfies the RIP condition with δ2k and ∥α0∥0 ≤ k. If δ2k <
1 then the solution α̂ of (3) is stable. More specifically,

∥α0 − α̂∥2 ≤ 2ϵ√
1− δ2k

. (6)

The same problem we had with the dictionary D = [z, z, . . . , z]
in the uniqueness case repeats also here because δ2k < 1 im-
plies 2k < Spark(MD).

3. GUARANTEES FOR SIGNAL RECOVERY

As mentioned before, though the Spark and RIP conditions
for MD are sharp for the representation recovery, they are
not designed for the signal recovery. In this section we use an
extended Spark and RIP definitions that will serve better the
signal recovery problem. The D-RIP [15] is used for having
stable recovery conditions for the signal reconstruction. In a
similar way, we propose a D-Spark property for the measure-
ment matrix M, introducing a new uniqueness condition for
the signal recovery. Note that the results in this section are
generalization of the ones presented in the previous section
for the signal’s representation. As a general guideline, by set-
ting the measurement matrix to be MD and the dictionary to
be the identity, the results of this section coincide with those
of the previous one.

3.1. Uniqueness for Signal Recovery

As in the representation case, we are interested to know when
we can guarantee that a signal x0 with a k-sparse represen-
tation under a matrix D is the unique solution of (4). In
other words, whether there exist another signal x1 ̸= x0 with
at most k-sparse representation under D such that Mx0 =
Mx1. For this task we introduce the D-Spark, an extension
of the Spark definition.

Definition 3.1 Given a matrix M we define D-Spark(M) as
the smallest possible number of columns from D, marked as
T , such that range(DT ) ∩Null(M) ̸= {0}.

In other words, for every set T with size |T | < D-Spark(M)
we have range(DT ) ∩ Null(M) = {0}, implying that for
any vector v ∈ R|T |, MDTv = 0 if and only if DTv = 0.
Note that this definition coincides with the one of the Spark
for D=I. This can be observed by noticing that in this case
DT =IT and thus MDT simply chooses T columns from M.
Thus, the above translates to the requirement that there is no
subset of |T | columns in M that are linearly dependent.

Having the D-Spark definition, we propose a uniqueness
condition for the signal recovery.

Theorem 3.2 Let y = Mx0 where x0 has a k-sparse rep-
resentation α0 under D. If k < D-Spark(M)/2 then x0 =
Dα̂ for α̂ the minimizer of (4), implying a perfect recovery.

Proof: Let us assume the contrary, i.e., there exists a mini-
mizer, α̂1 for (4) such that Dα̂1 ̸= Dα0. Let us denote the
support sets of α0 and α̂1 by T0 and T1 respectively. Since
α0 is a feasible solution to (4) and α̂1 is a minimizer, we
have that |T1| ≤ |T0| ≤ k. Thus, by definition Dα̂1 −
Dα0 ∈ range(DT1∪T0) where |T1 ∪ T0| ≤ 2k. Noticing
that MDα̂1 = MDα0, by the constraint of (4), we have
Dα̂1 − Dα0 ∈ Null(M). This contradicts the assumption
k < D-Spark(M)/2 because we get that Dα̂1 − Dα0 ∈
range(DT1∪T0) ∩ Null(M) ̸= {0}, which means that D-
Spark(M) < |T1 ∪ T0| ≤ 2k. �

Unlike the uniqueness condition of the regular Spark, the
one of the D-Spark allows linear dependencies within the dic-
tionary D. Looking at the example from the previous section,
for the dictionary D = [z, z, . . . , z], range(DT ) = {βz, β ∈
R} for any non-empty support T . Thus, the uniqueness con-
dition turns out to be z ̸∈ Null(M). This means that the fam-
ily of matrices M that guarantee uniqueness are the ones that
have at least one row non-orthogonal to z. This is far stronger
compared to earlier condition as discussed in Section 2.

3.2. Stability for Signal Recovery

Moving to the noisy case, we seek for a generalization of the
RIP that provides us with guarantees for the signal recovery.
For this task we use the D-RIP, as introduced in [15].
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Definition 3.3 A matrix M satisfies the D-RIP condition
with parameter δDk if it is the smallest value that satisfies

(1− δDk ) ∥x∥22 ≤ ∥Mx∥22 ≤ (1 + δDk ) ∥x∥22 (7)

for any vector x that has a k-sparse representation under D,
or equivalently for any x ∈ range(DT ), where T is such that
|T | ≤ k.

As in the representation case, a connection between the D-
RIP and the D-Spark can be established.

Proposition 3.4 Given a matrix M and sparsity k, if δDk < 1
then k < D-Spark(M) .

Proof: Requiring δDk < 1 implies that for any vector x ∈
range(DT ) such that |T | ≤ k it holds that ∥Mx∥2 ≥ (1 −
δDk ) ∥x∥2 > 0, hence Mx ̸= 0 . The last is equivalent to
requiring Null(M) ∩ range(DT ) = {0} for any support
set T such that |T | ≤ k, which is exactly equivalent to D-
Spark(M) > k. �

Having the definition of the D-RIP we present a stability
guarantee for the signal recovery that appears in [18, 19].

Theorem 3.5 Let y = Mx0 + e where ∥e∥2 ≤ ϵ, x0 has a
k-sparse representation α0 under D, and M satisfies the D-
RIP condition with δD2k. If δD2k < 1 then recovering the signal
using (3), where the recovered signal is x̂ = Dα̂, is stable:

∥x0 − x̂∥2 ≤ 2ϵ√
1− δD2k

. (8)

Proof: Since α0, the representation of x0, is a feasible solu-
tion to (3) we have that ∥α̂∥0 ≤ ∥α0∥0 ≤ k. Thus, x0 − x̂ is
a signal that has a 2k-sparse representation. According to the
constraint in (3) we also have ∥y −Mx̂∥2 ≤ ϵ. Using the D-
RIP, the triangle inequality, and the fact that ∥y −Mx0∥2 ≤
ϵ as well, we get

∥x0 − x̂∥2 ≤ 1√
1− δD2k

∥M(x0 − x̂)∥2 (9)

≤ 1√
1− δD2k

(∥y −Mx0∥2 + ∥y −Mx̂∥2) ≤
2ϵ√

1− δD2k

,

which is the stated result. �

4. PRACTICAL RECONSTRUCTION

With the above observations, we turn to check the recovery
performance of the ℓ1-minimization problem – a relaxed ver-
sion that replaces the ℓ0 with ℓ1-norm. In our experiment we
consider the noiseless scenario, and since solving (4) is NP-
hard [22], the ℓ1 relaxation is inevitable when dealing with
practical problems. We perform a simple synthetic test for
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Fig. 1. Representation recovery rate (left) and signal recovery
rate (right). Color attribute: fraction of realizations in which
ℓ1 minimization achieves a perfect recovery.

signals that are sparse under a dictionary which is highly co-
herent and with linear dependencies between its columns. We
generate a dictionary D = [D1,D2] where D1,D2 ∈ Rd×d,
d=1000, D1 contains sparse columns with 2 non-zero en-
tries which are 1 or −1 with probability 0.5 and D2 contains
columns which are linear combinations of random 3 columns
from D1 with random zero-mean white Gaussian weights.
Each entry of the measurement matrix M ∈ Rm×d is dis-
tributed according to a normal Gaussian distribution, where
m=⌊γd⌋ and γ is the sampling rate – a value in the range
(0, 1]. We set k to be ⌊ρm⌋ (ρ ≪ 1) and measure the recovery
rate of the representation α and the signal x for various values
of γ ∈ {0.1, 0.2, . . . , 1} and ρ ∈ {0.02, 0.04, . . . , 0.2}.

Figure 1 presents the recovery performance over 100 real-
izations per each parameter setting. Similar to the uniqueness
results for the representation, the reconstruction fails almost
always since D contains many linear dependencies (note that
in our case Spark(MD) = 4). However, though we fail in
reconstructing the representations, in most cases the recovery
of the signal succeeds. Note that even in the case where m=d
(γ=1), we get a very low recovery rate for the representations
and this is due to the non-uniqueness of any representation
with cardinality beyond 1. The recovery rate on the bottom
left part of the representation diagram is better than the other
parts because for very small values of k the chance to choose
the wrong representation decreases significantly.

5. CONCLUSION

In this work we studied the ℓ0-synthesis problem for signal re-
covery in the case of a general dictionary D. We have shown
that in the case where D contains linear dependencies signal
recovery is still theoretically plausible. We derived theoreti-
cal conditions for uniqueness of the solution in the noiseless
case and stability for the noisy case. In addition, empirical re-
construction results were presented for the ℓ1-synthesis mini-
mization problem, demonstrating that for this problem signal
recovery is achievable in the case where D is highly coherent.
These results motivate looking for theoretical guarantees for
the signal recovery using the ℓ1-relaxation in the same spirit
of those developed in the representation case [20, 5, 7], a topic
that would be covered by our upcoming research.
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