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ABSTRACT

This paper considers spectrum-blind reconstruction (SBR) of multi-
band signals (MBS) which are sampled with multi-coset sampling
(MCS) architecture. A new SBR algorithm which we refer to as
Khatri-Rao SBR (KR-SBR) is presented. With this new KR-SBR
algorithm, the average MCS rate can be reduced by 50% whilst at-
taining the same performance as that of the existing state-of-art SBR
algorithms. Under certain conditions we will also show that the pro-
posed KR-SBR algorithm has the capacity to achieve SBR when the
average MCS rate approaches the Landau sampling rate. Simula-
tion results are also presented to demonstrate the advantages of the
proposed KR-SBR algorithm.

Index Terms— Multiband sampling, Landau sampling rate,
Multicoset sampling, Khatri-Rao product.

1. INTRODUCTION

Spectrum blind reconstruction (SBR) of multi-band signals (MBS)
is considered in this paper. MBS is a bandlimited signal whose fre-
quency support resides within several continuous disjoint intervals.
The necessity of sampling such signals arise in several applications;
a typical example being in cognitive radio where a wide MBS spec-
trum is required to be sensed in order to determine the spectrum
holes [1]. Usually in practice these signals are spread over a wide-
band, but the occupancy of the information bands within the wide-
band is sparse. Due to the limitations of the ADC technology and
the enormous computation thereafter, sampling MBS spread over a
wide spectrum band according to the classical Nyquist sampling may
not be feasible as this requires the sampling to be performed at least
at twice the entire bandwidth of the wideband spectrum. However,
Landau bound [2] shows that the entire wideband spectrum can be
perfectly recovered if sampled at the total bandwidth of the informa-
tion bands, which is far less than the Nyquist rate in practice.

Among several sampling methods that may be found in the lit-
erature for sub-Nyquist sampling and reconstruction for such MBS,
multicoset sampling (MCS) [3] method is a predominant and an im-
portant sampling technique considered by many. MCS is essentially
a periodic nonuniform sampling technique which can be realized ef-
ficiently in practice using a multi-channel architecture. MCS for
sampling MBS was first introduced in [4], thereafter several works
have been done for spectrum reconstruction based upon this method;
most important ones being [4]-[6]. While [4, 5] showed the similar-
ity between the problem of SBR of MBS with MCS architecture and
direction of arrival (DOA) estimation, [6] showed the similarity with
multiple measurement vector (MMV) - compressive sensing (CS)
problem [8], and accordingly applied the corresponding algorithms
for SBR.

As it is shown in [4]-[6] that for successful SBR, the algorithms
of [4]-[6] requires the number of MCS channels be at least two times

the number of information bands (assuming some conditions are sat-
isfied, the details of which are explained later in Section 2), while
for non-blind spectrum reconstruction (i.e., the supports are well-
known) it is shown in [7] that successful reconstruction is possible
when the number of channels approaches the number of information
bands. In this paper we propose a new SBR algorithm which we
refer as Khatri-Rao SBR (KR-SBR) that has better reconstruction
capability than all the existing approaches. The proposed KR-SBR
algorithm first converts the MMV-CS problem into a larger space
single measurment vector (SMV)-CS problem thereby enhancing the
support estimation capability. However some additional conditions
on the parameters of the MCS are required to be satisfied in order
for successful blind reconstruction of the MBS with this new algo-
rithm. With these conditions being satisfied, this new KR-SBR al-
gorithm will be shown later in Section 3 that it has the capability to
successfully reconstruct the spectrum blindly even when the number
of MCS channels approaches the number of information bands. In
other words with the usage of the KR-SBR algorithm, the average
MCS rate can be reduced by 50% to obtain the same performance
as that of the existing state-of-art algorithms. Further in Section 4
we will show that when the bandwidth of the information bands ap-
proach a uniform bandwidth then blind reconstruction is achievable
at Landau sampling rate with the KR-SBR algorithm.

The rest of the paper is organized as follows: in the following
section the definition of the MBS followed by a brief description of
the MCS, its formulation and existing reconstruction methods are
provided. In Section 3 we first provide the formulation of the pro-
posed KR-SBR algorithm, then the necessary conditions on the MCS
parameters and this is followed by an outline of the entire algorithm.
Section 4 briefly compares the KR-SBR algorithm with the existing
algorithms. Simulation results are provided in Section 5, and Section
6 concludes the paper.

2. DEFINITIONS

A brief description of the MBS model and the MCS along with the
existing reconstruction methods shall be provided in this section.

2.1. Multi-band signal model

A signal x(t) belongs to the class of MBS denoted by M if [4, 6]:
i) x(t) is bandlimited to F = [0,1/T ].
ii) X( f ) which is the Fourier transform of x(t) has N information
bands that are disjoint i.e., if αi = [ai,bi], i = {1,2, ...,N} denotes
the support of the N information bands in F then α j ∩αk = /0, j �=
k, j,k ∈ {1,2, ...,N}.
iii) The bandwidth of the information bands doesn’t exceed B i.e.,
λ(αi)≤ B, where λ(k) denotes the Lebesgue measure for any k ⊆R.
In addition to these, we make an important assumption that the in-
formation bands are uncorrelated.
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2.2. Multi-coset sampling

2.2.1. Definition and formulation

MCS refers to a method of selecting certain samples from x(nT ),
where x(nT ) denotes the samples of x(t) that are sampled at uniform
Nyquist rate fnyq = 1/T . Let C = {ci}p

i=1 denote a set of p integers
satisfying 0 ≤ c1 < c2 < ... < cp ≤ L− 1, where L is known as the
sub-sampling factor, then for 1 ≤ i ≤ p, xci

(n) may be expressed as
[4, 6]

xci
(n) =

{
x(nT ), n = mL+ ci,m ∈ Z

0, otherwise. (1)

The set C = {ci}p
i=1 is referred to as the sampling pattern. In practice

MCS may be realized by a p-channel system with appropriate time
shifts in each channel corresponding to c1T,c2T, ...,cpT followed by
an ADC whose sampling clocks are synchronized and samples at a
rate 1/LT = fnyq/L.

The discrete time Fourier transform of xci
(n), Xci

( f ) is given by

Xci
( f ) = ∑

n∈Z
xci

(n)e− j2π f nT . (2)

If X( f ) denotes the Fourier transform of x(t), then by considering f
in the interval F0 = [0,1/LT ], the above expression may be simpli-
fied to [4]

Xci
( f ) =

e− j2π f ciT

LT

L−1

∑
l=0

e− j 2π
L

lci X( f +
l

LT
) (3)

Now for 1≤ i≤ p and ∀ f ∈F0, the above equation may be expressed
in the matrix form as

y( f ) = Ax( f ) (4)

where y( f ) = [e j2π f c1T Xc1( f ), ...,e j2π f cpT Xcp
( f )]T ,

x( f ) = [X( f ),X( f + 1
LT ), ...,X( f + L−1

LT )]T and A is a p×L matrix
with

[A]i,l =
1

LT
e− j 2π

L
lci (5)

l = 0,1, ...,L−1, i = 1,2..., p.
Usually in practice p < L and it may be observed that matrix A

is a partial discrete Fourier transform matrix of order L consisting
of p rows corresponding to C . Also notice that the ADC in each
channel samples at a rate of 1/LT . Hence the average rate for the
p-channel MCS is fmcs = p/LT and since usually in practice p < L,
fmcs < fnyq.

2.2.2. Reconstruction: Existing approaches

The aim is to reconstruct the unknown signal x(t) from the known
MCS samples xci

(n). Observe that eq.(4) relates the known Xci
( f ) to

the unknown x( f ). The lth row of x( f ), xl( f ) = X( f + l
LT ), ∀ f ∈F0

contains the spectrum in the region [ l−1
LT , l

LT ). Hence by the knowl-
edge of vector x( f ), X( f ),∀ f ∈ F may be determined and from
which x(t) can be estimated. The MCS parameters p, C and L are
chosen based on the MBS parameters (N,B,T ). All the existing ap-
proaches [4, 5, 6] for SBR (i.e., the support of the bands, {αi}N

i=1,
are not known and are to be estimated) chooses the MCS param-
eters L ≤ 1/BT and p ≥ 2N assuming C to be universal. The set
C is called universal if σ(A) = p, where σ(.) denotes the Kruskal
rank (see [6, Definition 2]) of the matrix. In practice, p < L and the
system of equations (4) is an underdetermined system. In order to
estimate the support set SF0 =

⋃
f∈F0

I (x( f )), where for any vector
v, I (v) = {k|vk �= 0}, existing algorithms borrow techniques from

DOA estimation and from CS. While [5] showed the similarity be-
tween this problem and the DOA estimation problem and proposed
to use methods such as MUSIC, [6] showed the similarity with the
multiple measurement vector (MMV) problem in CS[8] and stan-
dard CS algorithms were used. Upon the knowledge of SF0 , a sub-
matrix of A, ASF0

was formed that consisted of the columns of A
corresponding to SF0 and a least squares solution to eq.(4) provided
xSF0

( f ) from which x( f ) was estimated.

For N bands, when L ≤ 1/BT , |SF0 | ≤ 2N 1, and for every
f ∈ F0, if S f = I (x( f )) then |S f | ≤ N. Thus in order to estimate
the supports uniquely for every f ∈ F0, it is well known from the
results of the CS [8] that we require at least two times the number of
measurements. Assuming C to be universal and L ≤ 1/BT , in order
to blindly reconstruct N bands, the SBR algorithm of [5] requires at
least 2 p = 2N +1, the SBR algorithm of [6] requires p = 2N.

In the following section we propose a new algorithm for SBR
that can reconstruct perfectly N bands and requires only p = N,
thereby reducing the average MCS rate by a factor of two compared
to the existing approaches.

3. PROPOSED SPECTRUM-BLIND RECONSTRUCTION

The new formulation first converts the MMV problem (eq.(4)) into
a larger space single measurement vector (SMV) problem. CS algo-
rithms are then applied upon this SMV formulation to estimate the
supports. Before we describe the method, it is essential to define the
following set that is necessary for the description and also for the
characterization of the proposed method.
Definition 1 Difference modulo set: We define the following differ-
ence set Cd = {(ci − c j) mod L|1 ≤ i, j ≤ p,(ci,c j) ∈ C}. The set
Cd is allowed to have duplications. Further, we derive another set
Cdd from Cd where the duplications are removed. Since |C | = p,
|Cd |= p2 and |Cdd |= pdd , p < pdd ≤ p2 − p+1.

3.1. Formulation into the SMV problem

Similar to [4, 6] we first form the following covariance matrix

Q =
∫

f∈T
Y ( f )Y H( f )d f = AZ0AH (6)

where Z0 =
∫

f∈T x( f )xH( f )d f . Q and Z0 are p× p and L×L Her-
mitian matrices respectively. Because of the assumption of the in-
formation bands being uncorrelated (refer to Section 2.1), Z0 is a
diagonal matrix with [Z0]i,i =

∫
f∈T xi( f )xH

i ( f )d f . From the Kro-
necker product property of vectorization [9] the matrix Q may be
expressed in the vector form as

qd = vec(Q) = ((AH)T ⊗A)vec(Z0) = (A∗ ⊗A)vec(Z0) (7)

where vec(.) denotes the vector of a matrix, ⊗ denotes the Kronecker
product and A∗ denotes the conjugate matrix of A. Since Z0 is a
diagonal matrix, the above equation may further by simplified by
using the well-known property of the Kronecker product for diagonal
matrix (see [10, Property 1]) and may be expressed as

qd = (A∗ �A)diag(Z0) = Adz (8)

1When an information band straddles k/LT,1 ≤ k ≤ L− 1, then support
will double, hence for N bands |SF0 | ≤ 2N.

2 If we impose restriction on the information band location i.e., if it resides
within ( k

LT ,
k+1
LT ) for any k, 0 ≤ k ≤ L− 1, then the method of [5] requires

only p = N +1. However, in this paper we consider perfect blind setting and
do not impose any restriction on the band location.
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where Ad = A∗ �A, z = diag(Z0) and � denotes the KR product.
Since our algorithm is based on the KR product, we refer to our
algorithm as KR-SBR algorithm. From eq.(8) it may be noticed that
similar to A, Ad is also a partial discrete Fourier transform matrix of
order L and while A consists of p rows corresponding to the set C ,
Ad consists of p2 rows corresponding to the set Cd . Since Cd contain
duplicates that are redundant, these duplicates may be removed by
choosing only those rows corresponding to the set Cdd and the above
equation may be expressed as

qdd = Addz (9)

qdd is a column vector of size pdd and Add is a partial Fourier trans-
form matrix that consists of rows corresponding to Cdd and is of size
pdd ×L.

From the MMV eq.(4) and SMV eq.(9), it is important to notice
that ||x( f )∀ f∈T ||0 = ||z||0 and the support set ST =

⋃
∀ f∈T I (x( f ))=

I (z). Hence the support estimation from both the above new SMV
formulation (9) and the MMV formulation (4) are identical. Also,
notice while the number of measurements (number of rows) of eq.(4)
is p, the number of measurements of eq.(9) is pdd > p. Since the
number of measurements are virtually increased, the SMV eq.(9)
has better support estimation capacity than eq.(4). As pointed out
in the previous section that we require the number of measurements
which is at least twice the number of supports to uniquely determine
the supports. In this new formulation we can carefully choose C ,
thereby Cdd , in order to meet this criteria. More details of this shall
be described in the following section. It is important to observe
that while the existing approaches increase the measurements by in-
creasing p, here we virtually increase the measurements by carefully
choosing the MCS parameter. Hence with the proposed method, we
require a lower MCS rate compared to the existing approaches for
the same performance.

3.2. MCS parameter selection

Given the multiband spectrum parameters (N,B,T ), the following
theorem provides the necessary conditions in order to estimate the
supports uniquely with the above described new formulation.

Theorem 3.1 For any x(t) ∈ M , if
1) L ≤ 1/BT
2) p ≥ N
3) σ(A)≥ N

4) σ(Add)≥ 4N
then for every f ∈ F0, solution of eq.(4) is a unique N-sparse solu-
tion 3.

Add is a function of Cdd and L. In practice choosing C in order
to satisfy the above theorem (conditions 3) and 4)) is a combinato-
rial problem. However, the following theorem provides a simpler
method to choose MCS parameters that satisfies the conditions of
the above theorem.

Theorem 3.2 Assuming L ≤ 1/BT , if
1) p > 4 and p ≥ N
2) L is a prime number
3) C N ⊆ C , C N is chosen from the Golomb ruler with cN ≤ �L/2 or
from a sparse ruler with 2N ≤ cN ≤ �L/2,

then σ(Add)≥ 4N and σ(A)≥ N

3Due to lack of space we only state the theorems here, the proof shall be
provided in the journal version of this paper.

where C N = {ci}N
i=1 denote the N integers with c1 < c2 < ... < cN .

The above theorem provides only one of the simpler and a practical
option for choosing the parameters, exploration of other choices is
left to the user and is not within the scope of this paper. Based on
the knowledge of the supports, eq.(4) may be used to estimate the
spectrum. However some additional steps are necessary while esti-
mating the spectrum in cases when |SF0 | ≥ N. The following section
provides the details and the algorithm.

3.3. KR-SBR Algorithm

As pointed out earlier in the Section 2.2.2 that when L ≤ 1/BT ,
∀ f ∈ F0, |SF0 | ≤ 2N and for every f ∈ F0, |S f | ≤ N. Now choosing
C that satisfies Theorem 3.1 and setting T = F0, by solving eq.(9)
we obtain the unique support set SF0 such that |SF0 | = I (z) ≤ 2N.
Although SF0 may be unique, eq.(4) cannot be used in all cases for
estimating the spectrum. Eg: if p = N, and when |SF0 |> N the sys-
tem of equations (4) becomes underdetermined and cannot be used
for spectrum estimation. In such cases we have to use the parti-
tion technique in order to estimate the spectrum. In other words,
since for every f ∈ F0, |S f | ≤ N, there exists M = 2N + 1 con-
secutive intervals 0 = γ1 < γ2 < ...γM+1 = 1/LT that partitions F0,
Tm = [γm,γm+1),1 ≤ m ≤ M, such that the support of the partition
set denoted by STm

will satisfy |STm
| ≤ N, for every 1 ≤ m ≤ M [7].

In this paper since a blind setting is assumed, unlike [7] the partition
set {Tm} is not known a priori. In order to estimate {Tm}, we use
the bisection algorithm described in [6, Algorithm SBR2].

The following algorithm KR-SBR outlines the details of the re-
construction. First the algorithm considers the entire interval F0 and
checks whether |SF0 | ≤ N . If |SF0 | > N then the algorithm will bi-
sect the interval and continue the process till we obtain the interval
set {Tm} such that |STm

| ≤ N. The output of the algorithm, assum-
ing M+1 intervals, shall be the partition set (a,b) = {(am,bm)}M

m=0
support set for each partition ST = {STm

}M
m=0, and the number of

supports in each partition, NT = {NTm
}M

m=0.

Algorithm 1 : KR-SBR

Input: : T ,Y ( f )∀ f ∈ T , Initialize: T = F0,Assume: σ(Add) ≥
4N

Output: : ST ,(a,b),NT
1: if λ(T )< ε then
2: return ( ST = {},a = inf(T ),b = sup(T ),NT = 0)
3: end if
4: Compute the matrix Q (eq.(6) and form vector qdd (eq.(9))
5: Solve qdd = Addz (eq.(9)) for the sparsest solution z
6: if I (z)≤ N then
7: ST = I(z)
8: return ( ST ,a = inf(T ),b = sup(T ),NT = |ST |)
9: end if

10: if I (z)> N then
11: Split T into two equal intervals (T1,T2)
12: (ST1

,aT1
,bT1

,NT1
) = Algorithm1(T1, Y ( f )∀ f ∈ T1)

13: (ST2
,aT2

,bT2
,NT2

) = Algorithm1(T2, Y ( f )∀ f ∈ T2)
14: ST = {ST1

,ST2
}

a = {aT1
,aT2

}
b = {bT1

,bT2
}

NT = {NT1
,NT2

}
15: end if
16: return ( ST ,(a,b),NT )

From the output of the above algorithm, appropriate submatri-
ces {ASTm

}M
m=0 for the intervals may be formed and {xSTm

}M
m=0 can
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Table 1. Minimum average MCS rate necessary for successful blind
reconstruction of MBS consisting of N information bands of uniform
bandwidth B.

Landau rate (lower bound) NB

KR-SBR NB

[6, Algorithm SBR2] 2NB

[5] (2N +1)B

be estimated using eq.(4) from which the required x( f ) can be com-
puted.

4. COMPARISONS AND DISCUSSIONS

Table 1 compares the average MCS rate required for different SBR
algorithms in order to successfully reconstruct MBS consisting of N
information bands each of uniform bandwidth B. Also, for the sake
of comparison, the Landau rate which is the minimum sampling rate
necessary is also provided. From the table it may be observed that
with the KR-SBR algorithm described in this paper, the minimum
average MCS rate reduces by a factor of two compared to the state-
of-art technique and also approaches the Landau sampling rate.

The reason for this improvement may be better appreciated by
comparing Theorem 3.1 and [6, Theorem 3]. As pointed out earlier
in Section 3.1 that while the reconstruction of [6] is based on the
MMV model (eq.(4)) where only p MMV measurements are avail-
able, here the reconstruction is based on the modified SMV model
(eq.(9)) where the number of measurements are virtually increased.
Hence an additional constraint compared to [6, Theorem 3 ] in The-
orem 3.1 (condition 4) is imposed on Add . This additional constraint
guarantees unique support estimation of all N bands even with p=N
and thereby achieve perfect reconstruction, while [6] requires atleast
p = 2N for unique support estimation in order to achieve perfect re-
construction of N bands.

5. SIMULATION RESULTS

In order to experimentally compare the performance of the algo-
rithms, we considered a MBS M with F = [0,10GHz], N = 6
and uniform bandwidth of B = 243MHz. 1000 monte-carlo sim-
ulations was carried out for this class wherein for each MBS
signal the disjoint supports were randomly located within F and
the values for X( f ) was generated from an uncorrelated Gaus-
sian distribution. The Landau sampling rate for this class is
fLR = 6×243MHz = 1458MHz.

For the above MBS class, we chose L = 1/BT = 10e9/243e6 ≈
41 which is also a prime number and we chose the set C N =
{1,2,8,13,14,18} which satisfies condition (2) and (3) of Theorem
3.2. The value of p was varied from 4 to 15 and we ran the KR-SBR
algorithm to reconstruct the MBS spectrum. The set C was con-
structed by adding or removing elements to C N corresponding to the
value of p. The performance was compared with the SBR method
of [4] where we chose the MUSIC algorithm, which we refer as
MUSIC-SBR. Fig. 1 shows the probability of success (i.e., the num-
ber of MBS signal that was perfectly reconstructed out of these 1000
MBS signals) with varying p for both KR-SBR and MUSIC-SBR
algorithms. SBR of [6] was not chosen since it is well known that
it breaks for p < 2N (12 in this case). From the figure it may be
observed that in the region N+1 ≤ p ≤ 2N (in this case 7 ≤ p ≤ 12),
the MUSIC-SBR is able to reconstruct some of the multi-band sig-
nals i.e., for those signals when the band supports reside within an
interval as pointed out in footnote (2). However for p≥ 2N+1= 13,
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Fig. 1. Comparison of the reconstruction performance between the
proposed algorithm 1 and the reconstruction method of [5]

it is able to reconstruct the entire class successfully. On the other
hand it may be clearly noticed that the proposed KR-SBR algorithm
is able to reconstruct the entire MBS class successfully for all values
of p ≥ N = 6. It is important to notice that for p = 6, the average
MCS rate fmcs ≈ fLR, thus experimentally showing the capability of
the KR-SBR algorithm to blindly reconstruct the MBS spectrum at
Landau sampling rate.

6. CONCLUSIONS

SBR of multi-band signals which are sampled using the MCS ar-
chitecture was considered in this paper. A new SBR algorithm,
KR-SBR was presented. The proposed algorithm first converted
the MMV system problem into a larger dimensional SMV problem,
while maintaining the same sparsity, thereby enhancing the support
estimation capability. Appropriate conditions on the MCS parame-
ters that are necessary for successful blind reconstruction with this
new KR-SBR algorithm were provided. With these conditions being
satisfied, we showed that for L ≤ 1/BT , the proposed algorithm is
capable of blindly reconstructing N bands even with p=N, while the
best state-of-art SBR algorithms require atleast p = 2N. Further we
also showed that when all the information bands approach uniform
bandwidth then SBR is achievable even at Landau sampling rate us-
ing KR-SBR. Simulation results were also presented to experimen-
tally corroborate the theoretical claims of the proposed algorithm.

7. RELATION TO PRIOR WORK

The SBR of MBS sampled with MCS was considered earlier in [4]-
[6]. The work in [4, 5] uses DOA methods and the work in [6] uses
methods from CS to estimate the supports, and thereafter estimate
the spectrum. The method presented here differs from the above
wherein the method here first transforms the problem to a larger
Khatri-Rao space and then applies CS upon this transformed prob-
lem to estimate the supports. The technique of applying the transfor-
mation for SBR before using CS for estimation of supports provides
several advantages over the existing techniques as outlined in this
paper.
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