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ABSTRACT

In this paper, a sampling theorem for bandpass signals with uni-
formly spaced sampling points is discussed. We firstly show that
a function space consisting of all functions with a specific bandpass
property is a reproducing kernel Hilbert space and also give a closed-
form of the corresponding reproducing kernel. Moreover, on the
basis of the framework of the kernel-induced sampling theorem, we
give a simple perfect reconstruction formula for the bandpass signals
by uniformly spaced sampling points with the bandpass Nyquist rate,
which is defined as twice the signal bandwidth, for the cases that the
maximum frequency of the signals is identical to bandwidth multi-
plied by some positive integer.

Index Terms— bandpass signals, reproducing kernel, kernel-
induced sampling theorem, uniform sampling

1. INTRODUCTION

Bandpass sampling plays a crucial role in the field of various fields of
signal processing such as in optics, radar, sonar, communications etc.
as mentioned in [1, 2] for instance. Although nonuniform sampling
scheme has been making great progress in the theory of bandpass
sampling [3, 2], uniform sampling is still important from a practi-
cal point of view. Uniform sampling rate for a given band position
achieving perfect reconstruction was thoroughly investigated in [2],
and the same result was obtained by a more convincing way in [1].
According to their results, perfect reconstruction of bandpass signals
by the bandpass Nyquist rate, defined as twice the signal bandwidth,
is achieved only when the ratio U/(U − L) is positive integer num-
ber, where U and L denote the maximum and the minimum frequen-
cies of a given band; and we can never obtain perfect reconstruction
by sampling rates lower than the bandpass Nyquist rate. Note that
some literatures for this subject include errors as pointed out in [1].
Although the above limitation of passband setting exists, adopting
the bandpass Nyquist rate is useful in practical problems in terms of
efficiency of sampling since the bandpass Nyquist rate is the lowest
sampling rate achieving perfect reconstruction. Therefore, we con-
centrate on bandpass sampling with the uniform bandpass Nyquist
rate in this paper.

When only an insufficient set of sampling points, such as finite
number of sampling points and lack of some sampling points, is
available, we have to obtain the optimal approximation of a target
function. However, we do not have efficient tools to deal with this
problem. In [4], we constructed a unified framework for sampling
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problems including the optimal approximation called the kernel-
induced sampling theorem. In this paper, we review the bandpass
sampling on the basis of the framework of the kernel-induced sam-
pling theorem. Specifically, we show that a function space consisting
of all signals with bandpass property is a reproducing kernel Hilbert
space and we also give a closed-form of the corresponding reproduc-
ing kernel; and give a formula for the optimal approximation with
an insufficient set of sampling points. Moreover, we give a proof
for bandpass sampling theorem with uniform bandpass Nyquist rate
along with the framework of the kernel-induced sampling theorem,
which yields a novel perfect reconstruction formula which is simpler
than those obtained in conventional approach such as [2].

2. MATHEMATICAL PRELIMINARIES FOR THE
THEORY OF REPRODUCING KERNEL HILBERT SPACES

In this section, we prepare some mathematical tools concerned with
the theory of reproducing kernel Hilbert spaces [5, 6].

Definition 1 [5] Let Rn be an n-dimensional real vector space and
let H be a class of functions defined on D ⊂ Rn, forming a Hilbert
space of real-valued functions. The function K(x, x̃), (x, x̃ ∈ D)
is called a reproducing kernel of H, if

1. For every x ∈ D, K(·, x) is a function in H.

2. For every x ∈ D and every f(·) ∈ H,

f(x) = 〈f(·), K(·, x)〉H, (1)

where 〈·, ·〉H denotes the inner product of the Hilbert space
H.

The Hilbert space H that has a reproducing kernel is called a
reproducing kernel Hilbert space (RKHS). The reproducing property
Eq.(1) enables us to treat a value of a function at a point in D. Note
that reproducing kernels are positive definite [5]:

N
X

i,j=1

cicjK(xi, xj) ≥ 0, (2)

for any N , c1, . . . , cN ∈ R, and x1, . . . , xN ∈ D. In addition,
K(x, x̃) = K(x̃, x) for any x, x̃ ∈ D is followed [5]. If a re-
producing kernel K(x, x̃) exists, it is unique [5]. Conversely, ev-
ery positive definite function K(x, x̃) has the unique corresponding
RKHS [5].

Next, we introduce the Schatten product [7] that is a convenient
tool to reveal the reproducing property of kernels.
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Definition 2 [7] Let H1 and H2 be Hilbert spaces. The Schatten
product of g ∈ H2 and h ∈ H1 is defined by

(g ⊗ h)f = 〈f, h〉H1g, f ∈ H1. (3)

Note that (g ⊗ h) is a linear operator from H1 onto H2. It is
easy to show that

(h ⊗ g)∗ = (g ⊗ h), (4)

holds, where the superscript ∗ denotes the adjoint operator.
Finally, we introduce a kernel for a class of bandlimited (low-

pass) signals along with the description in [8] as a preliminary for
considering a class of bandpass signals. Let BW be a class of func-
tions whose Fourier transforms are supported by [−W, W ], with
W ≥ 0, forming a closed subspace in L2(−∞,∞). Note that BW

is trivially a Hilbert space. Let us consider the function

KW (x, y) = 2W sinc(2W (x − y)), x, y ∈ R, (5)

where
sinc(x) =

sin πx

πx
. (6)

Let χW (ξ) be the indicator function supported by [−W, W ],

(FKW (·, y))(ξ) = χW (ξ) exp(−i2πξy) (7)

holds for any y ∈ R, where F denotes the Fourier transform opera-
tor, which implies KW (·, y) ∈ BW for any y ∈ R. Moreover,

〈f(·), KW (·, y)〉BW

=

Z ∞

−∞
f(x)KW (x, y)dx

=

Z ∞

−∞
(Ff(·))(ξ)(FKW (·, y))(ξ)dξ

=

Z ∞

−∞
(Ff(·))(ξ)χ(ξ) exp(i2πξy)dξ

=

Z ∞

−∞
(Ff(·))(ξ) exp(i2πξy)dξ = f(y)

holds for any y ∈ R and any f(·) ∈ BW . Therefore, KW (x, y)
satisfies the two conditions in Definition 1 and it is concluded that
KW (x, y) is the reproducing kernel of BW [8].

3. REPRODUCING KERNEL FOR BANDPASS SIGNALS

In this section, we show that a class of functions with some specific
bandpass property is an RKHS and also give a closed-form of the
corresponding kernel.

Let B(L,U) be a class of functions whose Fourier transforms are
supported by [−U,−L]∪ [L, U ], with 0 ≤ L ≤ U , forming a closed
subspace in L2(−∞,∞). Note that B(L,U) is also a Hilbert space.
Let us consider the function

K(L,U)(x, y) = KU (x, y) − KL(x, y), x, y ∈ R, (8)

then we have the following theorem.

Theorem 1 K(L,U)(x, y) is the reproducing kernel of B(L,U).

Proof Since

(FK(L,U)(·, y))(ξ)

= (FKU (·, y))(ξ) − (FKL(·, y))(ξ)

= χU (ξ) exp(−i2πξy) − χL(ξ) exp(−i2πξy)

= (χU (ξ) − χL(ξ)) exp(−i2πξy)

holds and (χU (ξ) − χL(ξ)) is trivially the indicator function sup-
ported by [−U,−L] ∪ [L, U ],

K(L,U)(·, y) ∈ B(L,U) (9)

holds for any y ∈ R.
Let f(·) be an arbitrary function in B(L,U), then

〈f(·), K(L,U)(·, y)〉B(L,U)

=

Z ∞

−∞
f(x)K(L,U)(x, y)dx

=

Z ∞

−∞
(Ff(·))(ξ)(FK(L,U)(·, y))(ξ)dξ

=

Z ∞

−∞
(Ff(·))(ξ)(χU (ξ) − χL(ξ)) exp(i2πξy)dξ

=

Z ∞

−∞
(Ff(·))(ξ) exp(i2πξy)dξ = f(y)

holds for any y ∈ R. Thus, K(L,U)(x, y) satisfies the conditions in
Definition 1, which concludes the proof. 2

Note that L and U have no limitation except 0 ≤ L ≤ U in this
theorem.

4. KERNEL-INDUCED SAMPLING THEOREM FOR
BANDPASS SIGNALS

In this section, we discuss the optimal approximation of a function
in B(L,U) by a given set of sampling points; and also give an another
proof for perfect reconstruction with bandpass Nyquist rate on the
basis of the kernel-induced sampling theorem [4].

Firstly, we review some important results shown in [4]. Let I =
{1, . . . , `} be an index set, which may be an infinite set; and let
X = {xi | xi ∈ D, i ∈ I} be a given set of sampling points.
Let K(x, y) be an adopted kernel. From the reproducing property
Eq.(1),

f(xi) = 〈f(·), K(·, xi)〉HK (10)

holds for any f(·) ∈ HK , where HK denotes the corresponding
RKHS of K. By vectorizing Eq.(10) for all i ∈ I and applying the
Schatten product, we have

f =

 

X

i∈I

[ei ⊗ K(·, xi)]

!

f(·), (11)

where f denotes the `-dimensional vector whose i-th element is
f(xi) and ei denotes the `-dimensional unit vector whose i-th el-
ement is unity. For a convenience of description, we write

AK,X =
X

i∈I

[ei ⊗ K(·, xi)]. (12)

Note that AK,X is a linear operator from HK onto R`. Thus, sam-
pling process of f(·) by X is written as

f = AK,Xf(·) (13)

and reconstruction of f(·) from f and X can be regarded as a linear
inversion problem of Eq.(13). The solution subspace of the linear
inversion problem Eq.(13) is R(A∗

K,X), that is, the range space of
A∗

K,X . Note that any function f(·) ∈ R(A∗
K,X) can be represented

by
f(·) =

X

i∈I

αiK(·, xi) (14)
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with some coefficient vector α = [α1, . . . , α`]
′ ∈ R`, where the

superscript ′ denotes the transposition operator, since

A∗
K,Xα =

X

i∈I

[K(·, xi) ⊗ ei]α =
X

i∈I

αiK(·, xi)

holds. Accordingly, the optimal solution of the linear inversion prob-
lem is given by the orthogonal projection of f(·) onto R(A∗

K,X) and
its closed-form is given as

f̂(·) =
X

i,j∈I

f(xi)(G
+
K,X)ijK(·, xj) (15)

as shown in [4], where GK,X denotes the Gramian matrix of K with
X defined as GK,X = (gij), gij = K(xi, xj); and the superscript
+ denotes the Moore-Penrose generalized inverse [9].

When R(A∗
K,X) is identical to HK , it means that any function

in HK can be perfectly reconstructed by the set of sampling points
X , that is, the sampling theorem for HK with X holds. The next the-
orem clarifies a necessary and sufficient condition for R(A∗

K,X) =
HK .

Theorem 2 [4] HK = R(A∗
K,X) if and only if

K(y, y) =
X

i∈I

X

j∈I

K(y, xj)(G
+
K,X)i,jK(y, xi) (16)

holds for any y ∈ D.

On the basis of the above preliminaries, we discuss sampling
theorem and the optimal approximation for bandpass signals. As
mentioned in Section 1, in order to achieve perfect reconstruction
by the bandpass Nyquist rate, m = U/(U − L) must be a positive
integer number, which is identical to

L =
m − 1

m
U. (17)

So we assume Eq.(17) with some positive integer number m. Note
that the bandwidth of functions in B(L,U) is U/m and the bandpass
Nyquist interval for this case is m/(2U).

Firstly, we give the following theorem.

Theorem 3 Let X = {mk/(2U) | k ∈ Z}, where Z denotes the
set of integer numbers. For any f(·) ∈ B(L,U),

f(x) =
X

k∈Z

f
“ m

2U
k
”

K(L,U)

“

x,
m

2U
k
”

(18)

holds.

Proof Firstly, we calculate the Gramian matrix GK(L,U),X . For any
k ∈ Z,

K(L,U)

“ m

2U
k,

m

2U
k
”

= KU

“ m

2U
k,

m

2U
k
”

− KL

“ m

2U
k,

m

2U
k
”

= 2Usinc(0) − 2Lsinc(0) = 2(U − L) =
2U

m

holds and for any k, j ∈ Z with k 6= j and d = k − j,

K(L,U)

“ m

2U
k,

m

2U
j
”

= KU

“ m

2U
k,

m

2U
j
”

− KL

“ m

2U
k,

m

2U
j
”

= 2U
sin(πmd)

πmd
− 2L

sin(π(m − 1)d)

π(m − 1)d

=
2U

πmd
(sin(πmd) − sin(π(m − 1)d)

=
2U

πmd
(sin(πmd) − sin(πmd) cos(πd)) = 0

holds, which implies that GK(L,U),X = (2U/m)I , where I denotes
the infinite dimensional identity matrix.

Next, we confirm that Eq.(16) holds for K(L,U) and X . The
left-hand side of Eq.(16) is reduced to

K(L,U)(y, y) =
2U

m
(19)

for any y ∈ R as seen in the calculation of the diagonal elements of
the Gramian matrix. The right-hand side of Eq.(16) is reduced to

m

2U

X

k∈Z

“

K(L,U)

“

y,
m

2U
k
””2

(20)

since G−1
K(L,U),X = (m/(2U))I . Therefore, we have to show that

X

k∈Z

“

K(L,U)

“

y,
m

2U
k
””2

=
4U2

m2
(21)

holds. When y ∈ X , Eq.(21) trivially holds. When y 6∈ X , we have

X

k∈Z

„

K(L,U)

„

y,
mk

2U

««2

=
X

k∈Z

„

2Usinc

„

2U

„

y − mk

2U

««

−2Lsinc

„

2L

„

y − mk

2U

«««2

=
X

k∈Z

 

sin(2πUy − πmk)

π

„

y − mk

2U

«

−
sin

„

2πUy
m − 1

m
− π(m − 1)k

«

π

„

y − mk

2U

«

!2

=
X

k

1

π2

„

y − mk

2U

«2

 

sin2(2πUy)

+ sin2

„

2πUy
m − 1

m

«

−2(−1)k sin(2πUy) sin

„

2πUy
m − 1

m

««

.
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Gathering the terms for k = 2j yields

Te =
X

j∈Z

„

sin(2πUy) − sin

„

2πUy
m − 1

m

««2

π2

„

y − 2mj

2U

«2

=

U2

„

2 cos

„

πUy
2m − 1

m

«

sin

„

πUy
1

m

««2

m2 sin2

„

πUy
1

m

«

=
4U2

m2
cos2

„

πUy
2m − 1

m

«

and gathering the terms for k = 2j + 1 yields

To =
X

j∈Z

„

sin(2πUy) + sin

„

2πUy
m − 1

m

««2

π2

„

y − 2mj + m

2U

«2

=

U2

„

2 sin

„

πUy
2m − 1

m

«

cos

„

πUy
1

m

««2

m2 cos2
„

πUy
1

m

«

=
4U2

m2
sin2

„

πUy
2m − 1

m

«

.

Note that we used the identical equation

X

k∈Z

1

π2(k + a)2
=

1

sin2 πa
(22)

shown in [10] for obtaining Te and To. Thus, we have

X

k∈Z

„

K(L,U)

„

y,
mk

2U

««2

= Te + To =
4U2

m2
,

and it is concluded that Eq.(21) holds for any y ∈ R. Accordingly,
on the basis of Theorem 2, B(L,U) = R(A∗

K(L,U),X) holds, which
implies that the orthogonal projection of any f(·) ∈ B(L,U) onto
R(A∗

K(L,U),X), written as

f̂(x) =
X

k∈Z

f
“ m

2U
k
”

K(L,U)

“

x,
m

2U
k
”

, (23)

is identical to f(x) itself, which concludes the proof. 2

The newly obtained perfect reconstruction formula Eq.(18) for
B(L,U) is much simpler than those obtained in existing literatures
such as [2].

When some of sampling points are missing in X or only finite
subset of X are available, perfect reconstruction can not be achieved.
However, omitting the terms corresponding to these missing sam-
pling points from Eq.(18) still yields the orthogonal projection of
a target function onto the linear subspace R(A∗

K(L,U),X̃
), where

X̃ ⊂ X , which implies that Eq.(18) with X̃ is the optimal approxi-
mation of the target function.

Since GKU ,X = 2UI and GKL,X = 2LI ,

fU (x) =
X

k∈Z

f
“ m

2U
k
”

KU

“

x,
m

2U
k
”

(24)

and
fL(x) =

X

k∈Z

f
“ m

2U
k
”

KL

“

x,
m

2U
k
”

(25)

are also the orthogonal projections of f(·) onto R(A∗
KU ,X) and

R(A∗
KL,X), respectively; and it is trivial that KL(·, y) is orthogonal

to K(L,U)(·, z) for any y, z ∈ R. Therefore,

fU (x) = fL(x) + f(x) (26)

gives an orthogonal decomposition for fU (x). Note that fU (x) can
be regarded as a reconstruction formula for [−U, U ]-bandlimited
(lowpass) signal with aliasing effect caused by an incomplete set
of sampling points. Accordingly, it is concluded that fL(x) is the
aliasing term in fU (x) that is orthogonal to the true function f(·) ∈
B(L,U), which is one of newly obtained aspects by our analyses.

5. CONCLUSION

In this paper, we discussed sampling theories for bandpass signals.
We reformulated a class of bandpass signals as a reproducing kernel
Hilbert space and gave a closed-form of the corresponding kernel
functions, that is, the difference of ordinary sinc kernels. Moreover,
on the basis of the theory of kernel-induced sampling theorem, we
gave an another proof for sampling theorem of bandpass signals with
bandpass Nyquist rate under a specific band structure; and also gave
the optimal approximation formula with insufficient set of sampling
points.
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