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ABSTRACT

In this paper, we propose a novel algorithm to interpolate data de-
fined on graphs, using signal processing concepts. The interpo-
lation of missing values from known samples appears in various
applications, such as matrix/vector completion, sampling of high-
dimensional data, semi-supervised learning etc. In this paper, we
formulate the data interpolation problem as a signal reconstruction
problem on a graph, where a graph signal is defined as the infor-
mation attached to each node (scalar or vector values mapped to the
set of vertices/edges of the graph). We use recent results for sam-
pling in graphs to find classes of bandlimited (BL) graph signals that
can be reconstructed from their partially observed samples. The in-
terpolated signal is obtained by projecting the input signal into the
appropriate BL graph signal space. Additionally, we impose a ‘bilat-
eral’ weighting scheme on the links between known samples, which
further improves accuracy. We use our proposed method for col-
laborative filtering in recommendation systems. Preliminary results
show a very favorable trade-off between accuracy and complexity,
compared to state of the art algorithms.

Index Terms— Graph signal processing, sampling in graphs,
spectral graph theory, recommendation systems

1. INTRODUCTION

Graphs are a natural tool to represent data in many domains such as
protein interaction networks [1], recommendation systems [2] and
social networks [3]. A graph, represented as G = (V, E), consists
of a set of nodes V and a set of links E connecting these nodes. The
data on the graphs is often represented as a scalar or vector valued
function attached to the vertices of the graph (see [4] for a com-
prehensive review). An important area of research is the interpola-
tion problem in graph structured data. This arises in many guises,
such as in semi-supervised learning of categorical data (see [5]),
ranking problems [6], and missing value prediction such as matrix-
completion problems [7]. A common theme in all these applications
is that the goal is to predict the property of some nodes (class, rank-
ing or function), by interpolating the property values from a known
set of nodes. The accuracy of all linear and non-linear interpolation
methods on graphs rely on the implicit assumption that nodes close
to each other (in terms of the similarity captured by link-weights in
the graph) would usually have similar signal values. For example,
in an item-item graph in a recommendation system, a typical user
would rate two similar items with similar ratings. In the same way,
when predicting the functions of unannotated proteins based on a
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protein network, one relies on some notions of ‘closeness’ or ‘dis-
tance’ among the nodes. In other words, the graph functions of inter-
est are slowly-varying or “smooth” on the graph. Smoothness is well
studied in the classical signal processing domain, where it is mea-
sured in terms of the frequency contents of a signal. For example,
there are well known sampling results for recovering smooth ban-
dlimited signals from only a few of their samples via interpolation.
In this paper, we focus on the development of similar interpolation
techniques for graph signals.

The main objective in designing an interpolation method is of
course achieving high accuracy. A major challenge in achieving this
goal is managing to do so with reasonable computational complexity.
Graph based interpolation approaches can be broadly divided into
two categories: a) local methods and b) global methods. In local in-
terpolation methods, such as kNN methods, the predicted value at an
unknown node is computed as a weighted combination of k-nearest
known samples [8]. Although the method is computationally simple
and efficient, it does not capture global information, as well as the
dependencies that exist between known samples. On the other hand,
global methods, such as [9, 10], predict the value of all unknown
nodes at once, by selecting as solution a function that matches the
values at known nodes while satisfying certain global ”smoothness”
conditions. Global methods are computationally more expensive but
provide more accurate results. However, it is not clear how to opti-
mize the choice of objective function. Although our approach leads
to a similar least-squares based interpolation as in [9], the signal
processing perspective allows us to choose an optimal objective cri-
terion, which will be shown to lead to better interpolation. Another
problem is the choice of graph to interpolate data upon. The ex-
ample in Figure 1 demonstrates the choice of either operating on a
bare-bones star graph or a complete graph with all connections be-
tween movies. Interpolation can be defined on both graphs, so it is
unclear which of the two (or any other graph) should be chosen.

In this paper, we take inspiration from signal processing
techniques to formulate the partially known graph function as a
downsampled-upsampled (DU) signal. In the regular signal domain,
the original signal is recovered from its DU signal by applying a
low-pass filter. Similarly, in the graph domain, we design low-pass
filters to recover the original graph signal from its DU signal. The
proposed approach is based on recent results for sampling in ban-
dlimited graph signals by Pesenson [11] and our own prior work
in [12]. In this approach, given a graph and the set of nodes for
which the data is known we compute an optimal cut-off frequency,
such that the reconstruction is exact if the original graph signal is
bandlimited to this frequency, and a stable reconstruction is obtained
for non-bandlimited signals. The errors can be further minimized by
increasing smoothness of the function using a “bilateral- weighting”
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Fig. 1: An instance of predicting ratings of an unknown movie node (in red)
using ratings of a known set of movie nodes (in blue), in MovieLens 100k

dataset: (a) star graph commonly used in kNN [8] prediction methods,
which ignores all the links between known movie nodes. (b) alternative

graph that contains the star graphs and all the links between movies in the
known set of movies.

step on the underlying graphs. To the best of our knowledge, this is
a novel perspective for addressing graph based interpolation prob-
lems, and our preliminary results indicate a promising advantage
over existing methods. The rest of the paper is organized as follows:
in Section 2, we introduce the basic theory needed to understand the
proposed work, in Section 3, we describe our proposed interpolation
method. In Section 4, we demonstrate our proposed method on a real
movie dataset, and finally in Section 5, we conclude and describe
future work.

2. BASIC THEORY

2.1. Notations

An undirected simple graph G = (V, E) is a collection of nodes
V = {1, 2, ...N} connected together by set of linksE = {(i, j, wij)},
i, j ∈ V where (i, j, wij) denotes the link of weight wij be-
tween node i and j. The adjacency matrix W of the graph is
an N × N matrix such that W (i, j) = wij , the degree di a
node i is the sum of link-weights connected to node i, the de-
gree matrix D = diag{d1, d2, ..., dN} is a diagonal matrix, and
the combinatorial Laplacian matrix is L = D − W. We use
the normalized form of adjacency matrix W = D−1/2WD−1/2

and Laplacian matrix L = D−1/2LD−1/2 = I −W . L is a
positive semi-definite matrix, and has an orthogonal set of eigen-
vectors denoted U = {u1,u2, ...un} corresponding to eigenvalues
σ(G) = {λ1, λ2, ..., λN}, respectively. We denote< a, b >= atb
as the inner-product of vectors a and b, where at is the transpose of
a, and Sc = V − S, the complement set of S on graph G. Define
(A)S1,S2 to be the submatrix of any matrix A corresponding to
rows corresponding to S1 and columns corresponding to S2. Simply
denote (A)S,S = (A)S for brevity. We denote 0 and 1 as the all
zero and all one functions of size N . In order to use signal pro-
cessing tools, we define a graph function as a scalar valued discrete
signal f : V → R, such that f(i) is the value of the sample at node i.
The downsampling-upsampling (DU) operation on the graph signal
is defined as discarding the values of signal not on a selected subset
of nodes (say S) and replacing them with 0. By an appropriate
permutation, let us choose an indexing such that S = {1, 2, ...|S|},
and Sc = {|S|+ 1, |S|+ 2, ..., N}. Then the DU signal is denoted
as fS = [f(S)t 0(Sc)t]t.

Similar to classical Fourier transform, the eigenvectors and
eigenvalues of the Laplacian matrix L provide a spectral interpreta-
tion of the graph signals. The eigenvalues {λ1, λ2, ..., λN} can be
treated as graph frequencies, and are always situated in the interval
[0, 2] on the real line. The eigenvectors of the Laplacian matrix

demonstrate increasing oscillatory behavior as the magnitude of the
graph frequency increases (see [13] for details). The graph Fourier
transform (GFT) of a signal f is defined as its projection onto the
eigenvectors of the graph, i.e., f̃(λi) =< f , ui >, or in matrix
form f̃ = Utf .

2.2. Sampling Theory for Graph Signals

We start by revisiting the theory of downsampling graph signals in
the recent work by Pesenson [11], as well as its links to our prior
work in [12]. A signal is said to be bandlimited to the graph fre-
quency band [0, ω) on a graph G, if its GFT has support only at
frequencies [0, ω). The space of ω-bandlimited signals is called the
Paley-Wiener space and is denoted by PWω(G). It is easy to prove
that if f ∈ PWω(G), then:

‖Lf‖ ≤ ω‖f‖ (1)

where ‖.‖ denotes the l2 norm. The theory presented by Pesen-
son [11], describes a method to reconstruct any signal in PWω(G)
space from a special subset of nodes called the uniqueness set. This
is defined as follows:

Definition 1 (Uniqueness Set) A subset of nodes S ⊂ V is a
uniqueness set for a space PWω(G), ω > 0, if for any two signals
from PWω(G), the fact that they coincide on S implies that they
coincide on V .

The above definition implies that it is sufficient to know the value
of a ω-bandlimited graph signal only on the uniqueness set S. The
uniqueness set is in turn found by finding its complement set Sc,
which is a Λ-set with Λ = 1/ω. A Λ-set is defined as follows:

Definition 2 (Λ-set) A subset of nodes Q ⊂ V is a Λ-set if any
φ ∈ L2(Q) admits a Poincaré inequality with a constant Λ > 0,
i.e.,

‖φ‖ ≤ Λ‖Lφ‖, φ ∈ L2(Q) (2)

where L2(Q) is the space of all graph signals that are zero every-
where except at the subset of nodesQ ⊂ V .

The downsampling results given by Pesenson [11, Theorem 1.2 and
4.1] are formally:

Theorem 1 A set S ⊂ V is a uniqueness set for any signal in space
PWω(G), if its complement Sc is a Λ-set with 0 < ω < 1/Λ,
which implies that there exists a frame {Θs}s∈S in the subspace
PWω(G) such that the following reconstruction formula holds true
for all signals f ∈ PWω(G):

f(v) =
∑
s∈S

f(s)Θs(v), v ∈ V (3)

Theorem 1 provides a sufficient condition for reconstructing any sig-
nal in PWω(G) from its DU signal. The reconstruction method
is described in Section 3. A corollary of Theorem 1 provides the
uniqueness set for the special case when ω = 1 [11, Lemma 3.5].

Corollary 1 Any vertex cover 1 S ⊂ V of the graph G is a unique-
ness set for all signals f ∈ PWω(G) with ω = 1.

1A vertex cover for a graph G is a subset S ⊂ V such that each edge of
the graph is incident on at least one vertex in S.
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This result is also consistent with the result in our prior work on bi-
partite graphs in [12, 14]. Thus, an interpolation on a graph can be
posed as the problem of first defining the set of nodes with known
sample values as a uniqueness set S, then identifying the maximum
ω such that S is a uniqueness set for signals in PWω(G), and then
reconstructing the signal values on the complement set Sc by us-
ing (3).

While Pesenson’s work proves the existence of such ω, it does
not provide a method to compute it, and only considers how to in-
terpolate unknown values (in Sc) in the case when the signal is ω-
bandlimited. In the next section, we provide a result to compute
maximum ω given known set S, as well as interpolation in case of
non-bandlmited signals.

3. PROPOSED INTERPOLATION

To make a practical use of Pesenson’s result in Theorem 1, we first
present a result to compute the maximum ω, such that any signal in
PWω(G) can be reconstructed, given a subset of known samples in
S on any arbitrary graph G.

Proposition 2 Given a graph G with normalized Laplacian matrix
L, known set S and unknown set Sc, let (L2)Sc be the submatrix of
L2 containing only the rows and columns corresponding to unknown
set Sc. Then the known set S is a uniqueness set for all signals f ∈
PWωS (G) with ω∗S = σmin, where σ2

min is the smallest singular
value of (L2)Sc .

Proof Referring to Definition 2, let φ be a signal in L2(Sc), i.e.,
φ = [0(S)t φ(Sc)t]t. We have

‖Lφ‖2

‖φ‖2 =
< φ(Sc) (L2)Scφ(Sc) >

‖φ(Sc)‖2 = R(L2
Sc) (4)

whereR(.) is the Rayleigh quotient of a matrix. It can be shown that
R((L2)Sc) is always greater than the minimum eigenvalue σ2

min of
the matrix (L2)Sc . Thus,

‖Lφ‖2

‖φ‖2 ≥ σ
2
min ⇒ ‖φ‖ ≤

1

σmin
‖Lφ‖ (5)

Thus, Sc is a Λ-set with Λ = 1
σmin

. By Theorem 1, S is a unique-
ness set for all signals f ∈ PWω(G) with ω∗S = σmin.

Note that, ω∗S computed above is the maximum possible value that
satisfies the sufficient conditions in Theorem 1. We term ω∗S as the
cut-off frequency for reconstruction, since any graph-signal below
this frequency can be perfectly reconstructed from its DU signal on
S.

3.1. Interpolation method

Given the cut-off frequency ω∗S computed from Proposition 2, the
reconstruction of any graph signal is done by least-square projection
of the corresponding DU signal onto the PWω(G) space. Let K∗

be the number of eigenvalues of the Laplacian matrix L, less than
ω∗S . Define UK∗ as the matrix containing firstK∗ eigenvectors, and
(UK∗)S as the submatrix of UK∗ containing rows corresponding
to set S. The first eigenvector of a connected graph is u1 = D1/21,
which is not constant for graphs with irregular degrees. Therefore,

for piecewise constant signals, a common practice is to find LS ap-
proximation of function g = D1/2f . Thus, we want to compute
interpolated signal ĝ such that (ĝ)S = (g)S and:

ĝ =

KΛ∑
k=1

x(k)uλk = UK∗x, (6)

where x(k) = g̃(λk) is the kth GFT coefficient of g, and x =
[x1, x2, ...xKΛ ]. Comparing only the known set S on both sides
in (6), we obtain a linear system of equations: g(S) = (UK∗)Sx.
Theorem 1 ensures that (UK∗)S is a stable frame operator, and the
solution can be found by computing the pseudo inverse of (UK∗)S .
Thus, the interpolated graph signal on the unknown set Sc is given
by

g∗(Sc) = (UK∗)Sc

(
((UK∗)S)t(UK∗)S

)−1
((UK∗)S)tf(S).

(7)
Finally, the interpolated signal is computed as: f̂ = D−1/2ĝ.

Note that, while other global methods such as [9, 10] also pro-
pose similar least-square reconstruction solutions, the choice of
number of eigenvectors K in these methods is heuristic. In our
proposed method K∗ is chosen specifically to be the number of
eigenvalues below the cut-off frequency ω∗S given in Proposition 2,
which depends on the known set of nodes, and the topology of the
graph. The optimality of choosing ω∗S as cut-off frequency can be
justified as follows:

Let ωS is the chosen cut-off frequency. If signal f ∈ PWωS (G),
then the proposed reconstruction is perfect (loss-less), hence opti-
mal. For f /∈ PWωS (G), our proposed method still provides a sta-
ble least-square solution. The solutions with ωS < ω∗S are clearly
suboptimal in this case since the solution space of ωS is contained
in the solution space of ω∗S . For ωS > ω∗S , the reconstruction may
sometimes produce less error, but it is not guaranteed to be stable
(i.e., matrix (UK∗)S might not be a frame). In Section 4, we show
that choosing ωS > ω∗S leads to poorer results.

3.2. Bilateral Link-weight Adjustment

Unlike regular signals, the smoothness of a graph signal depends
both on the signal values and the underlying graph. This leads to
the question of whether we can modify the graph to adapt to the
given signal so that the signal is more band-limited on the simpli-
fied graph, thus leading to less interpolation error. The simplifica-
tion makes sense in many cases such as in recommendation systems,
where the underlying graph is the result of observing average corre-
lation over a set of training users (multiple instances), and the signal
corresponds to a single test user. We take inspiration from image
processing where this kind of signal adaptive filtering is achieved by
bilateral filters [15].

In our proposed method we use g = D1/2f as the signal to
be interpolated. From (1), we observe that g can be made more
bandlimited by minimizing ||Lg||. Define an error function:

ζ = Lg = (I−W)g = D1/2(I−D−1W)f . (8)

Clearly, minimizing ζ at each node minimizes ||Lg||. The value of
ζ at node i can be written as:

ζ(i) =
√
di

(
f(i)− 1

di

∑
j

wijf(j)

)
, (9)

which is proportional to the difference of f(i) with the weighted av-
erage (the weight being link-weights) of nodes directly connected to
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node i. Thus, by adapting the weights wij to be inversely propor-
tional to the absolute difference |(f(i)−f(j)| at every node, we can
minimize the error ζ, and hence ||Lg||. Following similar intuition
as in bilateral filters, we modify the weights between nodes in S as:

ŵij = wij .exp(−
|f(i)− f(j)|2

θ2
) ∀{i, j ∈ S}, (10)

where parameter θ is chosen to be the mean rating over all training
samples. Note that in (10), we can only change the weights between
two known nodes. Our proposed interpolation algorithm is given in
Algorithm 1. The complexity of our method is O(K∗|V|2), primar-
ily due to the least-square projection steps (5− 7) in Algorithm 1.

Algorithm 1 Proposed Graph Interpolation Method

Require: G0 = (V, E): Initial Graph, f : DU signal
1: Compute normalized Laplacian matrix L.
2: Compute ω∗S as the square-root of the smallest eigenvalue of (L2)Sc .
3: Modify known nodes’ link-weights as bilateral weights using (10).
4: Recompute normalized Laplacian matrix L.
5: Compute K∗ eigenvectors of L corresponding to eigenvalues λ < ω∗S .
6: Compute g = D1/2f .
7: Compute ĝ: (ĝ)S = (g)S and (ĝ)Sc using (7).
8: Interpolated signal f̂ = D−1/2ĝ.

4. EXPERIMENTS

We apply proposed interpolation method for collaborative filtering
in recommendation systems. The input in this problem is a partially
observed user-item rating matrix R, such that R(u,m) is the rating
given by user u to the movie m. Based on this information, the
system predicts new user-movie ratings. For empirical evaluation,
we choose the MovieLens 100k [16] dataset containing 100k user-
movie-rating triplets from N = 943 users and M = 1682 movies.
The ratings are integer values between 1 and 5. We use the 5-fold
cross validation data available in [16], which consists of 5 disjoint
random sets of 20k triplets. At each iteration, one of these sets is
used for testing and remaining sets for training.

We first compute a movie graph G0 from the training samples,
by computing cosine similarity [17] between every pair of movies.
For each test user u, we define S to be the set of movies with known
ratings, and and U to be the set of test movies. We compute the
subgraph Gu = (S ∪ U , Eu), corresponding to subset S ∪ U of
nodes. We define DU signal fu for u to be of size |U ∪ S|, with
fu(U) = 0 and fu(S) equal to known ratings. Subsequently, we
compute interpolated signal f̂u by using proposed method given in
Algorithm 1, with Gu and fu as inputs. In our preliminary analysis,
we compare the performance of our proposed method with two most
popular algorithms for collaborative filtering: 1) kNN method [17]
(with k = 30), and 2) probabilistic matrix factorization (PMF) [18]
with 10 latent features. Our proposed method is similar to the least
square (LS) interpolation of [9], except that we operate based on nor-
malized Laplacian matrix, and choose K∗ specified by ω∗S . To show
that this K is a good choice, we also implement the method in [9]
with K = K∗ + 10 (i.e., with 10 additional eigenvectors), respec-
tively. We use RMSE between predicted values and actual values to
measure performance. The predicted values less than 0 (more than
5) are set to 0 (5) before computing RMSE. Figure 2 plots the RMSE
of prediction as a function of number of training samples available.
Figure 2(a), shows cumulative RMSE of various implemented meth-
ods. Observe that kNN method perform the worst of all method,
and PMF method performs the best. Our proposed methods both

with or without bilateral weighting are very close to PMF method,
with the interpolation with bilateral weights performing slightly bet-
ter. We also observed that choosing K = K∗ + 10 in LS method
leads to poorer results. The Figure 2(b) shows another RMSE plot
where users are grouped by the number of training samples, with
x-axis showing those groups. We observe that both the LS method
and kNN method perform significantly worse when the number of
available training samples are small. The effect of applying bilateral
weighting in our proposed methods is also most visible here.

The PMF method predicts the ratings of all movies for all users
simultaneously by factorizing the whole N ×M rating matrix. It is
based on an iterative update rule and requiresO(NMP ) operations
per iteration where P is the size of the latent space. Theoretically,
any change to the rating matrix would require the PMF system to be
retrained on all users. However, in our method, the process of com-
puting the movie graph is decoupled from the process of predicting
ratings for a given user. Accommodating a few new ratings into the
systems is fast as it only affects a local portion of the movie graph.
Once the movie graph is fixed, the proposed method allows us to
predict the ratings of movies for each user separately in O(K∗M2)
operations. Thus, assuming K∗ ≈ P , the proposed method is faster
(i.e.,M2 < NM) than PMF, when ratings of items change fre-
quently and the recommendations need to be calculated only when a
user request them. Further , it may be possible to reduce complexity
in our method by using simplified filtering operations.
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Fig. 2: RMSE of different prediction algorithms with the number of training
samples on MovieLens dataset .

5. CONCLUSIONS AND FUTURE WORK

We proposed a novel method for interpolation of graph structured
data using signal processing tools. We formulated the interpolation
problem as reconstruction of a graph-signal from its DU sampled
signal. The success of this method in preliminary experiments opens
up many new opportunities and challenges. The future work includes
improving interpolation accuracy by a) finding out both necessary
and sufficient conditions for reconstruction (Theorem 1 is only a
sufficient condition), and b) understanding and formulating bilateral
weighting step as an optimization problem.
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