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ABSTRACT

This paper proposes a novel system design for signal acqui-

sition in Particle Tracking Velocimetry (PTV) applications.

For exploiting the Finite Rate of Innovation (FRI) of these

signals an appropriate sampling kernel is designed and the

reconstruction process is illustrated. The main contribution

is to show that aliasing effects can be neglected under cer-

tain conditions and an exact reconstruction is possible in most

cases. While the sampling rate is still at least twice the FRI,

it can be a fraction of the sampling kernel bandwidth. Hence,

the sampling rate can be adapted to the physical process un-

der investigation without changing the kernel designed for the

worst case scenario. Considering practical aspects of the re-

construction process it is shown that even in the presence of

noise precise results can be obtained.

Index Terms— Particle Tracking Velocimetry (PTV), Fi-

nite Rate of Innovation (FRI), sampling, aliasing, ESPRIT

1. INTRODUCTION

The last decade raised up the novel theory of Compressed

Sensing (CS) dealing with sparse signals. While CS handles

signals which are sparse itself, a different theory dealing with

signals which are sparse in their parametric definition has

been created. Vetterli et al.defined signals having a Finite

Rate of Innovation (FRI) per time interval whereby they can

be completely described by a finite set of parameters, e.g. a

stream of diracs is parametrised by the amplitudes and time

delays for each impulse [1–5].

Such signals are not necessarily limited to a certain band-

width but can be sampled at their rate of innovation without

loss of information if an appropriate sampling kernel can

be found. Early publications dealt with ideal or Gaussian

lowpass kernels which suffered from numerical instabilities

occurring during the reconstruction process or which could

not deal with aperiodic or finite length signals. Recent results

have shown that a filter kernel based on shifted sinc-functions

in the spectral domain can handle both problems appropri-

ately [6, 7]. Eldar et al.denoted this kernel as a Sum of Sinc

(SoS) filter whereby the number of shifted and superposed

sinc-functions has to be greater or at least equal to the number

of signal parameters.

The reconstruction process can usually be solved by standard

spectral estimation methods such as ESPRIT [8, 9] or the

annihilating filter method [1–5]. In the absence of noise these

techniques are exact up to numerical precision.

This paper considers the case of FRI signals and the re-

construction via standard spectral estimation methods. In

detail, it is shown how an efficient 2-stage sampling scheme

can be implemented which is motivated by the Particle Track-

ing Velocimetry (PTV) application [10, 11]. The main focus

of this paper is to analyse and illustrate under which condi-

tions aliasing effects have no negative influence. In contrast

to [6, 7], this paper deals with sub-Nyquist sampling where

the Nyquist criterion is violated not only with respect to the

FRI signal’s bandwidth but also with respect to the bandwidth

of the SoS sampling kernel. By numerical simulations it is

evaluated that the reconstruction process is successful with a

probability close to one.

2. SYSTEM DESCRIPTION

2.1. Motivation

The goal of PTV is to estimate a motion vector field for tracer

particles within flowing fluids such that turbulences can be

identified. Therefore, a laser illuminates a plane within the

volume and all particles located in that plane reflect light to

a camera sensor. Considering consecutive images, the mo-

tion vector field can be estimated, e.g. by simple correlation.

Fig. 1 illustrates the very basic principle of data acquisition

for a PTV system. Since the flow velocity can be high and

turbulences are of particular interest, there is a need to cap-

ture these images at high rates. Actual CMOS sensors ac-

quire images with 1MPixel at a rate of 7.5kHz which leads to

7.5GSample/s. Thus, offline processing is required to handle

that amount of data but the size of the memory where the data

can be stored limits the observation time practically to only a

few seconds.

However, the images obtained for PTV are sparse in that there

are only few particles within the illuminated plane. Further-

more, these particles can be parametrised by a few coeffi-

cients, i.e. their position and their size which influences the

reflected amount of light. The main idea of this paper is to
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Fig. 1. Model for PTV system

compress the acquired image by exploiting the FRI nature of

these signals and, therefore, reduce the amount of data to be

stored onto memory which increases the possible observation

time. The reconstruction can be done with spectral estimation

methods within an offline processing. For simplicity, the rest

of this paper is restricted to the one-dimensional case which

can be easily extended to the two-dimensional case for the

PTV application.

2.2. FRI Signals & Sampling Scheme

A signal with a finite rate of innovation, i.e. the set of spa-

tial weights and positions {ck, xk}K−1

k=0
of K particles with

impulse form h (x)

s (x) =
K−1
∑

k=0

ck · h (x− xk) (1)

is restricted to a finite space τx and acquired by the camera

sensor. Usually, a pixel of a camera sensor accumulates the

light impinging onto its surface. Assuming the pixel size is

small, the FRI signal after spatial sampling with rate M can

be approximated as

s [m] ≈ s
(

x = m
τx
M

)

(2)

which is the light impinging on a certain point with m ∈ M =
{0, ...,M − 1} and M = |M| as the number of pixels of the

sensor in the considered dimension. According to (1) the FRI

signal has a bandwidth depending on impulse shape h (x) and

requires, regarding to Nyquist, a sampling rate twice as large

as that bandwidth. Practically, the considered FRI signal (in

PTV applications) is observed with a rate given by the reso-

lution of usual CCD or CMOS sensors.

However, with respect to the rate of innovation the sampling

rate can be further decreased. Therefore, the authors use a

second sampling stage to compress the signal. In the dis-

crete spatial domain an appropriate sampling kernel g [m] is

applied leading via cyclic convolution to the lowpass signal

r [m].

r [m] = s [m]⊛ g [m] (3)

This paper uses the Sum of Sinc (SoS) kernel [6, 7]. Con-

ventionally, the kernel’s design depends on the rate of inno-

vation. However, the number of particles inside the plane are

g [m]

Estimator

1/P

K̂

Estimator ĉk, x̂ks [m]

online offline

r [m] r [p]

Fig. 2. Model for sampling FRI signals with adaptive rate

not known a priori. Moreover, it is assumed that the filter

kernel can hardly be adapted in real time. Hence, a worst

case implementation of the sampling kernel has to be cho-

sen. Adapting now the sampling rate to the kernel’s band-

width [6, 7] would require a sampling rate much higher than

the rate of innovation in many pictures. This paper proposes a

sampling scheme with a fixed SoS sampling kernel while us-

ing a sampling rate P below the corresponding Nyquist rate.

If the number of impulses (or particles) can be estimated ap-

propriately, the sampling rate can be adapted to the rate of

innovation without changing the kernel. Fig. 2 illustrates the

author’s proposal for an adaptive sampling scheme.

2.3. Sampling Kernel & Spectral Description

Consider the discrete signal in (2), its spectral description is

given by

S [m] = H [m] · 1

τx

K−1
∑

k=0

ck · e−j2πmxk/τx (4)

where m ∈ M defines the spectral position and H [m] are

the spectral coefficients for the impulse shape h (t). At the

spectral estimator at least 2K coefficients S [m] /H [m] are

considered to retrieve the signal parameters. Therefore, a

sampling kernel is applied retaining these coefficients. In the

continuous spectral domain this is the SoS kernel

G (f) =
τx√
2π

∑

l∈L

sinc (f · τx − l) (5)

with sinc-functions centred at multiples of 2π/τx. Hence,

after filtering different spectral coefficients will not interfere

with each other. To ensure a real valued filter kernel the spec-

trum has to be symmetric and therefore, the coefficients l ∈ L

have to be chosen from a set L =
{

−L−1

2
, ..., L−1

2

}

where

L = |L| has to be an odd integer.

Performing a cyclic convolution in spatial domain (3) leads to

a discrete spectrum for the kernel

G [m] =

{

nonzero m ∈ L

0 m ∈ Z\L
(6)

and a multiplication between signal and filter coefficients

R [m] = G [m] · S [m] . (7)
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2.4. Conventional Subsampling & Reconstruction

Recall the fact that the amount of data has to be decreased,

the lowpass signal r [m] has to be re-sampled in the spatial do-

main to obtain r [p] where p ∈ P ⊆ M. Only if P = |P| ≪ M
holds, the amount of data to be stored for the offline process-

ing can be decreased significantly.

Now, two different cases are distinguished. Critical sampling

at the kernel’s Nyquist rate is achieved with P = L. In this

case the spectral coefficients R [l] can be obtained from the

spatial samples r [p] by Discrete Fourier Transform (DFT).

If r [m] is re-sampled at a rate above the Nyquist rate, P > L,

an over-determined equation system has to be solved to obtain

the spectral coefficients R [l]. This requires a larger complex-

ity than a DFT but can increase the performance in the pres-

ence of noise. Details on the equation system can be found

in [6, 7, 11].

Once the coefficients R [l] are obtained, a linear equation sys-

tem can be solved to obtain the coefficients S [l] /H [l] which

in turn are considered by a spectral estimator, e.g. ESPRIT

[8, 9], to estimate the signal parameters {ĉk, x̂k}K−1

k=0
.

Due to this reconstruction procedure two different bounds

have been defined, recently.

P ≥ L ≥ 2K (8)

First, L ≥ 2K ensures that the number of spectral coefficients

is sufficient to estimate 2K parameters. Second, P ≥ L has

been defined in order to avoid aliasing. The case P < L is

investigated in Sec. 3.

3. SUB-NYQUIST SAMPLING

With respect to (8), the highest compression for the FRI signal

is only achieved with sampling at the critical rate P = 2K .

Conventionally, the sampling kernel is adapted to that rate of

innovation as well (P = L). Instead, this paper proposes sub-

Nyquist sampling with L ≥ P ≥ 2K . Thus, the number of

samples P can be adapted to the rate of innovation 2K while

the kernel size L is fixed.

Re-sampling of r [p] equidistantly with P samples at positions

xp = p τx
P generates periodic repetitions at multiples of the

sampling frequency. Due to P < L, aliasing occurs and these

repetitions interfere with the original spectrum.

R [l] =
∑

α∈Z

G [l − αP ] · S [l − αP ] (9)

Since the SoS kernel is zero at discrete frequencies beyond its

bandwidth (6), only a finite set of repetitions has to be consid-

ered for the aliasing effect while all others can be neglected.

Considering the case where L is an integer multiple of P ,

L = ν · P , ν ∈ N, exactly ν − 1 shifted copies at negative

and positive multiples of the sampling frequency as well as

P

2P−P

−2P 0

0

R [l]

R [l]

R [l]

fτx/2π

fτx/2π

fτx/2π

α = 0

α = 1

α = 2α = −1

α = −2

Fig. 3. Aliasing of the original spectrum with L = 9 nonzero

coefficients due to subsampling with P = 3 (ν = 3). Peri-

odic repetitions (α 6= 0) appear at multiples of the normalised

sampling frequency P

the original spectrum (without spectral shift) remain.

R [l] =

ν−1
∑

α=−ν+1

G [l − αP ] · S [l − αP ] (10)

Fig. 3 illustrates such a case with L = 9, P = 3 and ν = 3.

As can be seen, the left and the right hand side of two linearly

shifted versions touch each other (α = {+1,−2} and α =
{−1,+2}) and each pair forms one cyclically shifted spec-

trum within the range of l ∈ L. Since a circular shift by αP
in the spectral domain leads to a factor exp (−j2παPp/P ) =
exp (−j2παp) in the original domain, the spatially sampled

signal can be reconstructed via Inverse DFT from its aliased

spectrum and has the form

r̂ [p] = (r [p]⊛ g [p]) ·
ν−1
∑

α=0

e−j2π·αp . (11)

With α and p being integers, (11) becomes

r̂ [p] = ν · r [p] . (12)

Except a constant scaling factor, the reconstructed spatial sig-

nal is represented by the same samples as in the absence of

any aliasing effects. If this is the case, the aliased spectrum

can also be considered for spectral estimation techniques to

reconstruct the signal parameters. Hence,

L = νP ≥ P ≥ 2K (13)

can be defined for sub-Nyquist sampling. On the one hand,

(13) ensures that there are a sufficient number of spectral co-

efficients for the reconstruction of 2K parameters. On the

other hand, the relation L = νP ensures that each two lin-

early shifted spectra complement each other to one circular

shift and, thus, aliasing effects can be neglected.

4. SIMULATIONS

Since (12) validates that a reconstruction is possible, it does

not ensure that there is a unique solution. However, numeri-
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cal simulations showed that with a probability close to one the

correct solution can be found. Beside that, the reconstruction

fails if there is a signal with different parameters requiring

less energy. This is caused by the least squares criterion ex-

ploited by the reconstruction algorithm, e.g. ESPRIT.

4.1. Estimation Reliability

To avoid reconstruction failures the authors propose a 3-stage

improvement process.

First, ESPRIT considers a Hankel matrix containing the coef-

ficients R [p]. If the order of K is not known at the spectral

estimator, the rank of that matrix can be considered to esti-

mate K . The Hankel matrix can be modified in order to de-

crease the degrees of freedom for this algorithm. Therefore,

the probability for reconstruction failures is decreased as well.

However, the estimated rank must not be smaller than K , oth-

erwise the reconstruction process certainly fails.

Second, the roots of the eigenvalues of the estimated subspace

can be considered. Since the weights ck are real-valued, all

roots have to lie on the unit circle. Otherwise, it is a priori

known that the obtained estimated value leads to a failure.

Finally, the reconstructed weights can be considered. The au-

thors observed that for a false reconstruction the weights will

be very small, usually close to numerical precision of the con-

sidered machine. This is caused by the least squares criterion

which minimises the weights ck with respect to the observed

samples r [p]. If very small weights are not of interest, as

for PTV, or if the occurrence probability for small weights is

negligible, these reconstructed pulses can be rejected while

others remain correct.

4.2. Results

Simulations have been run with 104 iterations, equally dis-

tributed positions xk ∈ (0, τx] and Rayleigh1 distributed

weights with variance one. Furthermore, the samples s̃ [m] =
s [m]+n [m] have been disturbed by additive white Gaussian

noise n with zero mean and variance σ2
N. Fig. 4 illustrates the

MSE, which is the normalised distance between the original

and the reconstructed impulses for K = {5, 10}. Further-

more, different sampling schemes without a) and with b), c)

aliasing have been applied.

The figure illustrates that there is only a very slight perfor-

mance degradation between those sampling schemes with and

without aliasing. This means, that an increasing kernel band-

width does not lead to a noise amplification and, therefore, no

worth mentioning performance degradation occurs. In prac-

tice, this slight difference might be negligible. Furthermore, it

is shown that noise can be combated by oversampling. Again,

the analysed aliasing effects lead only to a very slight loss in

1It is assumed that ck ≥ 0 holds for the PTV problem, since there is no

negative light intensity. Furthermore, only significant particles are of interest

and, therefore, Rayleigh distribution has been chosen.
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Fig. 4. MSE for the reconstructed particle position for K = 5
(solid lines) and K = 10 (dashed lines) with a) minimum

sampling rate P = 2K + 1 without aliasing, b) sampling at

the minimum rate P = 2K + 1 with aliasing ν = 3 and

c) oversampling by factor three (P = 6K + 1) with aliasing

effects ν = 3

terms of the MSE (curves without aliasing are not shown for

oversampling).

Further analysis considering the error between the real and

the estimated number of particle, K and K̂ respectively, show

that the error

∣

∣

∣
K − K̂

∣

∣

∣
for the model order decreases signif-

icantly with decreasing noise variance and is even negligible

for very small noise values.

Moreover, it has been observed, that an appropriate rank esti-

mation can improve the performance significantly. The MSE

as well as the error for the model order decreases significantly

compared to simulation without rank estimation.

5. CONCLUSION

This paper proposed a new design for sampling FRI signals

with the SoS kernel. Furthermore, it was shown that aliasing

effects can be neglected under certain conditions and exact

reconstruction results can be obtained. Simulations showed

that noise has no influence on the analysed aliasing effects

and can be treated by oversampling.
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