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ABSTRACT

This paper proposes a new perspective on the relationship be-
tween the sampling and aliasing. Unlike the uniform sam-
pling case, where the aliases are simply periodic replicas of
the original spectrum, random sampling theory shows that the
randomization of sampling intervals shapes the aliases into a
noise floor in the sampled spectrum. New insights into both
the Fourier random sampling problem and Compressive Sens-
ing theory can be obtained using the theoretical framework
of random sampling. This paper extends the theory of con-
tinuous time random sampling to deal with random discrete
intervals generated from a clock. A key result is established
to relate the discrete probability distribution of the sampling
intervals to the power spectrum of the aliasing noise. Based
on the proposed theory, a generic discrete random sampling
hardware architecture is also proposed for sampling and re-
constructing a class of spectrally sparse signals at an average
rate significantly below the Nyquist rate of the signal.

Index Terms— compressive sensing, random sampling

1. INTRODUCTION

In software defined radio (SDR), an ADC directly samples the
signal from the antenna, which allows the front-end circuitry
previously implemented in dedicated analog hardware to be
moved into the digital domain. The wide spectrum range of
the RF signal places a demanding performance requirement
on the ADC. However, FCC reports on spectrum utilization
reveal that even in the most densely packed urban areas the
overall spectrum utilization rarely exceeds 35% at any one
time. With the advent of Compressive Sensing (CS) [1], dif-
ferent ADC architectures[2, 3] have been proposed to reduce
the sampling complexity by taking advantage of the sparse
spectrum occupancy characteristic. Many of those architec-
tures require specialized analog mixing circuits.

This paper develops a discrete random sampling theory
that leads to a feasible architecture for discrete random sam-
pling which can be integrated into existing standard ADC ar-
chitectures without introducing extra mixing circuits. Using
the proposed architecture, it is possible to sample and recon-
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struct a class of spectrally sparse signals at an average sam-
pling rate below the Nyquist rate of the signal.

The investigation of this paper originated from the Fouri-
er random sampling problem[4] that was studied before the
emergence of the CS theory. The CS theory established a
more general framework that justifies the effectiveness of the
Fourier random sampling technique. On the other hand, since
the proposed sampling interval in the Fourier random sam-
pling problem follows a geometric probability distribution, a
theory[5] that generalizes the relationship between the proba-
bility distribution of the sampling intervals and the spectrum
of the sampled signal is also applicable. This paper general-
izes the continuous time random sampling theory to deal with
discretely distributed intervals which makes the theory more
practical from an implementation perspective.

2. THE FOURIER RANDOM SAMPLING PROBLEM
AND THE COMPRESSIVE SENSING THEORY

In the Fourier random sampling problem, given a signal x ∈
CN , we are trying to find an optimal Fourier representation
xopt of K complex exponential terms to approximate x. This
clearly can be done by performing the fast Fourier transform
(FFT) of x and locating the K largest terms. Gilbert et al. [4]
showed that we can find a Fourier representation x∗ by only
sampling a subset T ⊆ [0, N − 1] of x such that

||x− x∗||22 ≤ (1 + ε)||x− xopt||22, (1)

where ε is an error bound parameter. The subset T can be set
up by conducting independent Bernoulli trials on the index
set [0, N − 1] with a fixed probability.

In Compressive Sensing[1], we can express x as

x[n] =
1√
N

K−1∑
k=0

αke
j2πωkn/N , ωk ⊆ [0, N − 1]. (2)

which can be written in matrix form, x = Fα, where the
elements of the discrete Fourier transform(DFT) matrix F are
given by Fω,t = 1√

N
ej2πωt/N , ω, t = 0, ..., N − 1, and α

only hasK non-zero values at the normalized frequencies ωk.
The objective is to recover α from the random samples of x.
The generation of the sampling subset T is exactly the same
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as what is proposed in the Fourier random sampling problem.
If the expected cardinality of T is M , then each sample on
the uniform time grid is selected with probability M/N or
discarded with probability 1−M/N . Rudelson and Vershynin
[6] showed that we can recover the sparse vector α with high
probability if M = O(K log4N).

The sampling intervals in the above mentioned sampling
scheme follow a geometric probability distribution. This pa-
per investigates the relationship between the discrete proba-
bility distributions of the sampling intervals and the aliases,
and justifies the feasibility of applying discrete random sam-
pling to recover a sparse signal spectrum.
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Fig. 1. Power spectra of a sampled sinusoidal signal with a
frequency at 5 Hz for exponentially distributed ARS.
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Fig. 2. Power spectra of a sampled sinusoidal signal with a
frequency at 5 Hz for uniformly distributed ARS.

3. CONTINUOUS TIME RANDOM SAMPLING

Digital aliasing-free signal processing (DASP) was first men-
tioned by Shapiro and Silverman [7] in 1960. The key idea is
to randomize the placement of sampling points so as to sup-
press aliasing. Beutler and Leneman [8, 9, 10, 5] published a
series of papers on the theory of stationary point process and
random sampling of random process in the late 1960s.

A random impulse process s(t) is defined as

s(t) =

∞∑
n=−∞

δ(t− tn). (3)

A random process x(t) sampled by s(t) can be written as
y(t) = x(t)s(t). If tn is independent from x(t), then

Φy(f) = Φx(f) ∗ Φs(f), (4)

where Φy(f), Φx(f), Φs(f) are the power spectral densities
(PSD) of y(t), x(t) and s(t), respectively. When tn = nT ,

Φs(f) =
1

T 2

∞∑
n=−∞

δ(f − n

T
). (5)

Therefore, aliases are periodic replicas of the signal spectrum
under uniform sampling. The following theorem proposed in
[5] generalized the analytic expression of Φs(f).
Theorem: Denote β as the average sampling frequency,
1/E[τk], where τk are independently and identically dis-
tributed (i.i.d) intervals between samples. If the characteristic
function of τk is ψτk(f), then

Φs(f) = β<
{

1 + ψτk(2πf)

1− ψτk(2πf)

}
. (6)

Since ψτk(0) = 1, Φs(f) will have an impulse at f = 0.

3.1. Additive Random Sampling

In additive random sampling (ARS), the sampling time tk is

tk = tk−1 + τk, (7)

If the i.i.d interval τk follows an exponential distribution τk ∼
Exp(λ), then

Φs(f) = λ2δ(f) + λ. (8)

When τk is uniformly distributed τk ∼ Uniform[a, b],

Φs(f) =

P
(
ρ sin((b−a)πf)

(b−a)πf , (b+ a)πf
)

f 6= 0(
2
a+b

)2
δ(f) f = 0

, (9)

where P (r, θ) is a Poisson kernel defined as:

P (r, θ) =
1− r2

1− 2r cos θ + r2
, (10)

Comparing (8,9) with (5), the δ(f) term will preserve the
original signal spectrum, Φx(f), but the aliases no longer ap-
pear as frequency shifted replicas of Φx(f). Figs. 1 and 2
show the sampled power spectrum of an analytic sinusoidal
signal with a frequency at 5 Hz. The average sampling fre-
quency is β = 3 Hz, which is below the Nyquist rate. The
number of samples is M = 1024. In both cases, the aliases
are shaped into a noise floor. The shape of the noise floor de-
pends on the distribution of the sampling intervals. The power
of the aliasing noise floor is proportional to the power in the
signal spectrum. Therefore, sparsity is required in the original
signal spectrum to avoid very high aliasing noise power that
would overwhelm the original signal spectrum.
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4. DISCRETIZATION OF THE SAMPLING
INTERVALS

In practice, it is difficult to implement continuously distribut-
ed intervals. The intervals are usually quantized onto a fixed
time grid determined by a high-speed clock. Suppose the time
grid has a uniform spacing of ∆, denote {τ qk} as the quantized
time intervals, which are determined according to the round-
ing up criterion:

τ qk = n∆, if (n− 1)∆ < τk ≤ n∆ n ∈ Ω, (11)

where Ω is the corresponding feasible integer set. For ex-
ample, if {τ qk} follows an exponential distribution, then Ω =
{1, 2, ...}. If {τ qk} follows a uniform distribution in [0, T ],
then Ω = {1, 2, ..., b T∆c}. The time quantization of τk results
in a periodic expansion of its characteristic function ψτk(f).
Accordingly, Φs(f) also becomes periodic with a periodici-
ty of 1

∆ . Therefore, we can ensure that the sampled signal
is aliasing free only if x(t) is bandlimited in [− 1

2∆ ,
1

2∆ ]. In
other words, the minimum spacing rather than the average
spacing of the sampling intervals determines the highest fre-
quency that can be sampled without aliasing. However, the
average sampling frequency is not completely free from the
aliasing effect. Aliases in this case are not replicas of the o-
riginal signal, but behave like spread spectrum noise, called
aliasing noise here. The power of the aliasing noise is deter-
mined by the average sampling frequency.

5. THE DISCRETE RANDOM SAMPLING THEORY

This section extends the continuous-time random sampling
theory to the discrete sampling interval case, and establishes a
key result (18) that relates the discrete probability distribution
of the sampling intervals with the power distribution of the
aliasing noise.

If we denote Prob.{τ qk = n∆} as p[n], then∑
n∈Ω

p[n] = 1. (12)

We can define the discrete characteristic function of τ qk as
the discrete time Fourier transform(DTFT) of the probabili-
ty mass function (PMF) p[n]

ψτq
k
(ejω) =

∑
n∈Ω

p[n]ejωn, (13)

where the normalized frequency ω is related to the continuous-
time frequency f via

ω = 2πf∆. (14)

Accordingly, define the normalized aliasing noise power of
s(t) as

Φn(ejω) = <

{
1 + ψτq

k
(ejω)

1− ψτq
k
(ejω)

}
, ω ∈ (0, π]. (15)

We leave out the case where ω = 0, which corresponds to an
impulse function in Φn(ejω). Integrate Φn(ejω) over (0, π],
we can show that∫ π

0+

Φn(ejω)dω =

(
1− 1∑

n∈Ω np[n]

)
π. (16)

Note that
E(τ qk ) = ∆

∑
n∈Ω

np[n], (17)

the above equation can be rewritten as

1

π

∫ π

0+

Φn(ejω)dω︸ ︷︷ ︸
avg. noise power

+
∆

E(τ qk )︸ ︷︷ ︸
normalized avg. fs

= 1. (18)

Equation (18) represents a fundamental tradeoff between the
average sampling frequency and aliasing noise power. We
can reduce the average aliasing noise power by increasing the
normalized average sampling frequency, or vice versa. As an
extreme case, when E[τ qk ] = ∆, which is exactly the uniform
sampling case with spacing ∆, the aliasing noise power will
decrease to zero.

For the discrete random sampling scheme adopted in the
Fourier random sampling problem, the sampling interval fol-
lows a geometric probability distribution

p[n] = pn−1(1− p), (19)

where p is the skip probability. It is easy to verify that

Φn(ejω) = p, ω ∈ (0, π]. (20)

and E(τ qk ) =
∆

1− p
. (21)

Thus, we can decrease the average sampling rate by increas-
ing the skip probability p, which will also raise the flat alias-
ing noise floor.

A generalization of the geometric probability distribu-
tion is the negative binomial distribution, which represents
the probability of n successes in a sequence of independen-
t Bernoulli trials until r failures occur. When r = 1, the
negative binomial distribution degenerates into the geometric
probability distribution. If the success probability is denoted
as p, then we have

p[n] =

(
n+ r − 2

n− 1

)
pn−1(1− p)r, n = 1, ... (22)

E(τ qk ) =

(
pr

1− p
+ 1

)
∆. (23)

When the average sampling interval E(τ qk ) is fixed, so is the
average aliasing noise power. However, we have the freedom
to shape the power distributions of Φn(ejω) over (0, π] by
tuning p and r. Fig. 3 shows an example of different aliasing
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noise PSDs relative to the original signal frequency with the
same average sampling interval E[τ qk ] = 5.2∆. As r increas-
es, there will be a deeper dip around ω = 0, where the o-
riginal signal frequency resides. Therefore, the aliasing noise
has less impact under the signal frequency when r increases.
The reduced aliasing noise power is shaped into other fre-
quency bands. In other words, we can distribute the power
distribution of the aliasing noise by designing an appropriate
probability mass function for the random discrete intervals.
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Fig. 3. The aliasing noise power spectrum Φn(ejω) (dB) rel-
ative to the original signal frequency (ω = 0) for negative
binomial distributed ARS, E[τ qk ] = 5.2∆.

6. A GENERIC DISCRETE ADDITIVE RANDOM
SAMPLING ARCHITECTURE

Based on the discrete random sampling theory, Fig. 4 shows
the block diagram of a generic ARS scheme. The random
number generator produces a discrete interval τ qk = nk∆ ac-
cording to a prescribed PMF. The input signal x(t) is sampled
at tk and quantized to xq(tk). Finally, xq(tk) and the interval
integer nk are both encoded and packaged together as a pair.

Amplitude quantization (number of bits) is an important
parameter for ADCs. If the amplitude of each sample x(tk)
can be quantized to full precision within the minimal interval
∆, then the amplitude quantization noise can still be treated
as uniformly distributed additive noise. However, a funda-
mental tradeoff in almost all ADC hardware is the tradeoff
between amplitude resolution and sampling speed. Allowing
each sample to reach its full amplitude precision increases the
minimal time interval ∆ and reduces the frequency coverage.
A sampling model that leverages this tradeoff was proposed
in [11].

7. SIGNAL RECONSTRUCTION FROM THE
RANDOM SAMPLES

The clocked time quantization in the ARS architecture makes
it possible to calculate the power spectrum using an FFT by
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Fig. 4. The block diagram of a generic ARS scheme

replacing missing values with zeros. After we have collected
M quantized samples with {xq(tk), nk}, k = 1, ...,M and
N =

∑M
k=1 nk, we can insert zeros in between each sample

according to nk as shown in Fig. 5. If we denote the zero-
inserted signal vector as x̄, then we can calculate the normal-
ized power spectrum an N -point FFT

p =
1

M2

∣∣FFTN{x̄}
∣∣2, (24)

Since the minimal time interval is ∆, the frequency grid s-
pacing is 1

N∆ Hz. If we are only interested in the detection
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Fig. 5. Interval zero insertion for ARS samples.

of certain frequency components from the random samples,
calculating the power spectrum is sufficient. In some appli-
cations, it is desirable to reconstruct the randomly sampled
signal onto a fine uniform time grid so that it can be further
processed by classic DSP systems. However, not all bandlim-
ited signals can be recovered from the random samples be-
cause the aliasing noise introduced by the random sampling
process could overwhelm the original signal spectrum. Since
the aliasing noise power is proportional to the spectrum occu-
pancy of the original signal, only those signals with a sparse
spectrum occupancy can be successfully reconstructed. Three
factors: aliasing noise, spectral leakage, and amplitude quan-
tization noise make the sampled signal not perfectly sparse in
the frequency domain. Generic reconstruction algorithms in
Compressive Sensing such as OMP[12] or CoSaMP[13] was
customized in [14] to deal with this specific sparse spectrum
reconstruction problem.
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