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ABSTRACT

We introduce an adaptive distributed technique that is suitable
for node-specific parameter estimation in an adaptive network where
each node is interested in a set of parameters of local interest as well
as a set of network global parameters. The estimation of each set
of parameters of local interest is undertaken by a local Least Mean
Squares (LMS) algorithm at each node. At the same time and cou-
pled with the previous local estimation processes, an incremental
mode of cooperation is implemented at all nodes in order to perform
an LMS algorithm which estimates the parameters of global inter-
est. In the steady state, the new distributed technique converges to
the MMSE solution of a centralized processor that is able to process
all the observations. To illustrate the effectiveness of the proposed
technique we provide simulation results in the context of cooperative
spectrum sensing in cognitive radio networks.

Index Terms— Adaptive distributed networks, incremental al-
gorithm, cooperation, node-specific parameter estimation.

1. INTRODUCTION

With the aim of enabling an energy aware and low-complex dis-
tributed implementation of the estimation task, several useful opti-
mization techniques that generally yield linear estimators have been
derived. Among them, the techniques following a consensus ap-
proach have been extensively applied. In some initial works, for
instance [1], the implementation of the consensus strategy is done in
two stages. Unfortunately, this kind of implementation is not suit-
able for real time estimation as required in time-varying environ-
ments. Afterwards, motivated by the procedure obtained in [2], alter-
native implementations of the consensus strategy were presented in
the literature (e.g., [3]-[4]) which force agreement among the coop-
erating nodes in a single time-scale. However, to do so they require
conditions that do not let the network undertake a continuous learn-
ing and optimization [5]. The latter issue is actually the main one
addressed in a single time-scale by distributed estimation algorithms
that are based on adaptive filtering techniques. In particular, in this
kind of techniques a linear estimator is obtained by distributing a
specific stochastic gradient method under an incremental or a diffu-
sion mode of cooperation. In the incremental mode (e.g., [6]-[7])
each node communicates with only one neighbor, and consequently
the data are processed in a cyclic manner throughout the network.
Better reliability can be achieved at the expense of increased en-
ergy consumption in the so-called diffusion mode considered, for in-
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stance, in [8]-[10]. Under this strategy, each node can communicate
with a subset of neighboring nodes.

Although there are many published techniques addressing differ-
ent distributed estimation problems, only very few papers consider
node-specific settings where the nodes have overlapped but different
estimation interests. Possibly, some of the first works explicitly con-
sidering the aforementioned setting are [11]-[12]. In these works,
for networks with a fully connected and tree topology, Bertrand et al
proposed distributed algorithms that allow to estimate node-specific
desired signals sharing a common latent signal subspace.

There are also a few recent works deriving distributed schemes
dealing with problems which can be considered as Node-Specific
Parameter Estimation (NSPE) problems. The consensus approach
presented in [13] is based on optimization techniques that force
different nodes to reach an agreement when estimating parameters
of common interest. In the case of schemes based on a distributed
implementation of adaptive filtering techniques, the literature is less
extensive. In one of these works [14], the authors use diffusion adap-
tion and scalarization techniques to solve the multi-objective cost
function that appears in a NSPE problem where there is no prior
knowledge regarding the overlapped estimation interests.

To the authors knowledge, there is no existing literature dealing
with incremental-type adaptive filtering for NSPE problems in which
the existence of the overlapped estimation interests is known a pri-
ori. Motivated by this, as well as by the fact that the aforementioned
prior information is available in many applications [13], we state in
this paper a new NSPE formulation where all nodes are interested in
estimating some parameters of local interest as well as some parame-
ters of global interest. Afterwards, we derive a novel distributed esti-
mation algorithm that converges to the minimum mean-square error
(MMSE) solution of the corresponding centralized problem. Sim-
ilarly to the hierarchical identification principle [15], it undertakes
distinct but coupled optimization processes in an adaptive way. All
of them but one employ a Least Mean Square (LMS) algorithm that
runs locally at each node with the aim of estimating its parameters of
local interest. The remaining optimization process, associated with
the estimation of the parameters of global interest, relies again on
an LMS algorithm implemented at all nodes under an incremental
mode of cooperation. Finally, we provide an illustrative application
for power spectrum sensing in cognitive radio. In this application,
each secondary user (SU) is interested in estimating the power spec-
trum of the primary users (PU), which is a task of global interest,
and the power spectrum of its local interference source(s).

We use boldface letters for random variables and normal fonts
for deterministic quantities. Capital letters refer to matrices and
small letters refer to both vectors and scalars. The Hermitian trans-
position and the expectation operator are denoted by (·)H and E{·},
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respectively. Moreover,RA = E{AHA},RA,B = E{AHB} and
rA,b = E{AHb} for any random matrices A, B and any random
vector b. Finally, 0L×M denotes a L×M zero matrix.

2. PROBLEM STATEMENT

Let us consider a network consisting of N nodes randomly deployed
over some region (see Fig. 1). Each node k, at discrete time i, has
access to data {dk,i, Uk,i}. These data are related to events that take
place in the network area and follow the subsequent model

dk,i = Uk,iw
o
k + vk,i (1)

where, for each time instant i,
- wok equals the vector of dimensionMk that gathers all param-

eters of interest for node k,
- vk,i denotes measurement and/or model noise with zero

mean and covariance matrix Rvk,i of dimensions Lk × Lk,
- dk,i and Uk,i are zero-mean random variables with dimen-

sions Lk × 1 and Lk ×Mk, respectively.
Given the previous observation model, the objective for each

node in the network is to use data {dk,i, Uk,i} in order to estimate
its specific unknown vector wok. In particular, we seek the set of lin-
ear node-specific estimators {wk}Nk=1 that minimize the following
global cost function

Jglob({wk}Nk=1) =

N∑
k=1

E
{
‖dk,i −Uk,iwk‖2

}
. (2)

In most of the existing papers, e.g., [6]-[8], the derived adaptation
strategies minimize (2) when wok = wo for all k ∈ {1, 2, . . . , N}.
However, note that the formulation considered in this paper goes
one step further by considering a more general scenario where not
all node-specific parameters of interest, i.e. {wok}Nk=1, are the same.
Instead, we allow some of these parameters to differ from one node
to another. Specifically, as shown in Fig. 1, each vector {wok}Nk=1

consists of globally common components as well as of components
of local interest for node k. On the one hand, the parameters of
global interest in the network may account for an event common
to all nodes. On the other hand, the parameters of local interest for
each node kmay reflect an influence of some local phenomena that is
possibly different for each node. In this way, the observation model
provided in (1) can be reformulated as

dk,i =
[
Ukg,i Ukl,i

]
·
[
wo

ξok

]
+ v

(i)
k

= Ukg,iw
o + Ukl,iξ

o
k + v

(i)
k

(3)

where, for each k ∈ {1, 2, . . . , N}, and time instant i,
- wo is a sub-vector of dimension Mkg × 1 that gathers all the

parameters of global interest,
- ξok is a sub-vector of dimension Mkl × 1 that gathers all the

parameters of local interest,
- Ukg,i and Ukl,i are matrices of dimensions Lk ×Mkg and
Lk×Mkl that might be correlated, and consist of the columns
Uk,i associated with wo and ξok, respectively.

Thus, according to (2) and (3), our NSPE problem can be restated as

{ŵ, {ξ̂k}Nk=1}

= argmin
w,{ξk}Nk=1

{
N∑
k=1

E
{
‖dk,i −Ukg,iw −Ukl,iξk‖

2}} . (4)

. . .
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Fig. 1. Network with node-specific parameter estimation interests.

3. A SOLUTION OF THE NEW NSPE PROBLEM

In this section, first we derive a centralized solution of the optimiza-
tion problem (4), and then we develop a distributed strategy that con-
verges to this centralized solution. For the sake of simplicity and
without losing generality, we assume that Mk = M , Mkg = Mg ,
Mkl = Ml and Lk = L for all k ∈ {1, 2, . . . , N}.

3.1. Centralized solution

As it can be seen by inspecting (4), in order to solve the considered
NSPE problem we have to optimize a scalar real-valued cost function
w.r.t. multiple vector variables, i.e., {w, {ξk}Nk=1}. After gathering
these variables into the following augmented vector

w̃ =
[
wT ξT1 ξT2 · · · ξTN

]T
( M̃ × 1 ) (5)

where M̃ = Mg+N ·Ml, we can easily verify that our optimization
problem is equivalent to

̂̃w = argmin
w̃
{J(w̃)} = argmin

w̃

{
N∑
k=1

E
{
‖dk,i − Ũk,iw̃‖2

}}
(6)

where

Ũk,i =
[
Ukg,i 0L×Ma Ukl,i 0L×Mb

]
(7)

with Ma = (k − 1)Ml and Mb = (N − k)Ml. It is well-known
that the resulting solutions ̂̃w are given by the normal equations [16](

N∑
k=1

RŨk,i

)
· ̂̃w =

N∑
k=1

rŨk,idk,i
. (8)

However, this centralized batch solution requires the inversion of a
square matrix whose dimension is actually proportional to the num-
ber of nodes N , and hence, a prohitively high computational cost is
needed. To alleviate this problem, different iterative procedures can
be followed, e.g., an iterative steepest descent method [16].

3.2. Distributed solution

To improve energy efficiency, robustness and scalability of the previ-
ously described centralized approach, it is highly desirable to design
a distributed and adaptive scheme for the computation of ̂̃w. Toward
this goal, our starting point is a fully distributed incremental method
that generally has better rate of convergence and steady-state perfor-
mance than its corresponding steepest descent method [6].
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Taking into account that our global cost function J(w̃) is ex-
pressed as the sum of N local cost functions {Jk(w̃)}Nk=1 with

Jk(w̃) = E
{
‖dk,i − Ũk,iw̃‖2

}
, (9)

at each time instant i ∈ {1, 2, . . .} a distributed incremental-based
algorithm for (6) should perform the following steps for all k ∈
{1, 2, . . . , N} and some initialization ψ̃(0)

N ψ̃
(i)
0 ← ψ̃

(i−1)
N

ψ̃
(i)
k = ψ̃

(i)
k−1 − µk

[
∇Jk(ψ̃

(i)
k−1)

]H (10)

with [
∇Jk(ψ̃

(i)
k−1)

]H
= RŨk,i

ψ̃
(i)
k−1 − rŨk,idk,i

(11)

where ψ̃(i)
k denotes a local estimate of w̃o at node k and time i ac-

cording to (6), ψ̃(0)
N equals an initial guess about w̃o, and µk > 0 is

a suitable chosen positive step-size parameter. For sufficiently small
step-sizes {µk}Nk=1, and relying on locally available information,
this strategy ensures that limi→∞ ψ̃

(i)
k = ̂̃w with k ∈ {1, 2, . . . , N}

and ˜̃w satisfying (8) (see [17] and [18]). The aforementioned con-
vergence is achieved by a cyclic cooperation where each node of
the network transmits its local estimate ψ̃(i)

k to only one immediate
neighbor. Nonetheless, since the dimension of ψ̃(i)

k depends on the
number of nodes, this kind of iterative solutions is still non-scalable
w.r.t. both communication resources and computational power, an
issue that will be addressed in the following.

Due to the structure of the augmented regressors Ũk,i defined
in (7), the involved correlation quantities are written as

RŨk,i
=


RUkg,i 0Mg×Ma RUkg,i,Ukl,i

0Mg×Mb

0Ma×Mg 0Ma×Ma 0Ma×Ml 0Ma×Mb

RHUkg,i,Ukl,i
0Ml×Ma RUkl,i

0Ml×Mb

0Mb×Mg 0Mb×Ma 0Mb×Ml 0Mb×Mb


(12)

and

rŨk,idk,i
=
[
rHUkg,idk,i

0HMa×1 rHUkl,i
dk,i

0HMb×1

]H
. (13)

From (11), (12) and (13), we can easily see that, only two sub-
vectors of ψ̃(i)

k are updated at each time instant i, when a specific
node k performs the update step of (10). In particular, according
to (5) and (10), only the sub-vectors associated with the local esti-
mates of w and ξk at node k and time instant i, denoted as ψ(i)

k and
ξ
(i)
k , respectively, are updated based on a linear combination ofψ(i)

k−1

and ξ(i−1)
k . Therefore, without any loss of optimality w.r.t. the incre-

mental algorithm, the previous fact allows to properly modify (10)
and (11) to obtain the following incremental-based NSPE algorithm,

ψ
(i)
0 ← ψ

(i−1)
N[

ψ
(i)
k

ξ
(i)
k

]
=

[
ψ

(i)
k−1

ξ
(i−1)
k

]
+ µk

[
rUk,idk,i

−RUk,i

[
ψ

(i)
k−1

ξ
(i−1)
k

]]
(14)

for k ∈ {1, 2, . . . , N} and some initializations ψ(0)
N and {ξ(0)k }

N
k=1.

Unlike the incremental algorithm of (10) and (11), the above
NSPE algorithm is scalable in terms of computational burden and
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Fig. 2. Structure of the distributed I-NSPE.

energy resources. On the one hand, regarding the computational
complexity, at each time instant, each node only needs to update two
vectors whose dimensions are independent of the number of nodes.
In particular, according to (14) these two vectors are ψ(i)

k and ξ(i)k of
dimensions Mg and Ml, respectively. On the other hand, decreas-
ing the power consumption, at each time instant i the NSPE strategy
requires a cyclic mode of cooperation where all nodes are involved,
and where each node transmits its local estimate of wo to its imme-
diate neighbor (see Fig. 2).

To proceed further, let us derive a suitable adaptive mechanism
that will enable the network to respond to time-variations in the un-
derlying signal statistics. To do so, several approaches may be fol-
lowed. Among them, in this work we adopt the instantaneous ap-
proximations rUk,idk,i

≈ UHk,idk,i and RUk,i ≈ UHk,iUk,i in (14).
This leads to a distributed incremental-based LMS type algorithm
depicted in Fig. 2 and summarized below

Incremental-Based NSPE (I-NSPE)

• Start with some initial guess ψ(0)
N and {ξ(0)k }

N
k=1.

• At each time i, for each k ∈ {1, 2, . . . , N} execute

ψ
(i)
0 ← ψ

(i−1)
N[

ψ
(i)
k

ξ
(i)
k

]
=

[
ψ

(i)
k−1

ξ
(i−1)
k

]
+ µk U

H
k,i

[
dk,i − Uk,i

[
ψ

(i)
k−1

ξ
(i−1)
k

]]
(15)

A careful inspection of (15) reveals that the I-NSPE algorithm is
equivalent to the solution of (4) by means of the so-called Hierarchi-
cal Least Squares Identification Principle (HLSI) [15]. In particular,
similar to the methods derived under the aforementioned principle,
the new algorithm couples, in a fully distributed fashion, a set of
N + 1 optimization processes. One of them consists in the estima-
tion of wo by means of a global LMS algorithm that is implemented
at all nodes under an incremental mode of cooperation. On the con-
trary, each one of the N remaining processes is solved by an LMS
algorithm that is locally performed at each node in order to estimate
its parameters of local interest.

From the theory related to stochastic gradient optimization [16],
it can be shown that the convergence of the algorithm provided
in (15) is ensured when, for all k ∈ {1, . . . , N}, 0 < µk < 2/λmax,
with λmax denoting the largest eigenvalue of

∑N
k=1RŨk,i

. Addi-
tionally, in a scenario where the local statistics of dk,i and Uk,i are
stationary at all nodes, if all the matrices RUkl,i

are positive definite
and at least one of the autocorrelation matrices RUkg,i is positive
definite, it can be proved that the I-NSPE algorithm asymptotically
converges to the unique centralized solution of (6) as µk → 0. Con-
sequently, the proposed strategy leverages cooperation to alleviate
the absence of local observability of the global parameters, wo, at a
specific subset of nodes.
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4. SIMULATIONS

To illustrate the performance of the proposed algorithm, we provide
numerical results in the context of cooperative spectrum sensing in
cognitive radio networks based on [19] and [20, Section 2.4]. In
brief, there are Q primary users (PU) transmitting and N secondary
users (SU) sensing the power spectrum. In addition to PUs, for each
SU we also assume a different low-power interference source. The
aim for each SU is to estimate aggregated spectrum transmitted by all
the PUs as well as the spectrum of its own local interferer (LI). In this
setting, we use Φtq(f) to denote the power spectral density (PSD) of
the signal transmitted by the q-th PU. Φtq(f) can be represented as

Φtq(f) =

J∑
j=1

bj(f)woqj = bT0 (f)woq (16)

where b0(f) = [b1(f), . . . , bJ(f)]T ∈ RJ is a vector of basis func-
tions evaluated at frequency f and woq = [woq1, . . . , w

o
qJ ]T ∈ RJ is

a vector of weighting coefficients representing the power transmitted
by the q-th PU over each basis. Thus, if pqk,i denotes the path loss
coefficients between the q-th PU and the k-th SU and pIk,i refers
the path loss coefficients between the local interferer and k-th SU
for each instant i, then the signal received by the k-th SU at time i
can be expressed as

Φrk,i(f) = bTk,i(f)w̃ok + zk,i (17)

where w̃ok = [wo1, . . . , w
o
Q, ξ

o
k]T ∈ R(Q+1)J , zk,i is the measure-

ment and/or model noise and bk,i(f) = pk,i ⊗ b0(f) ∈ R(Q+1)J

with⊗ standing for the Kronecker product, ξok equal to the vector of
weighting coefficients representing the power transmitted by the LI
associated with the k-th SU and pk,i = [p1k,i, . . . , pqk,i, pIk,i]

T .
Considering that, at discrete time i, each node k observes the

received PSD in (17) over L frequency samples {fm}Lm=1, the sub-
sequent vector lineal model is obtained

dk,i = Uk,iw̃
o
k + vk,i (18)

where vk,i denotes noise with zero mean and covariance matrix
Rvk,i of dimensionL×L and where Uk,i = [bk,i(f1) . . . bk,i(fm)]T

is of dimensionL×(Q+1)J withL > (Q+1)J . Note that the tem-
poral index i in the regressors Uk,i allows to account for possible
variations in the channel conditions over time.

For the computer simulations presented here, we compare the
I-NSPE scheme with an LMS-based non-cooperative strategy. It
should be emphasized at this point that we do not compare the I-
NSPE algorithm with the incremental strategy designed in [6] since
the latter was developed for a scenario where wok = wo for all k ∈
{1, 2, . . . , N}. Thus, that comparison would not be fair since for
[6] the aforementioned strategy would experience the term Ukl,i ξ

o
k

as additional noise at each node. Furthermore, since the I-NSPE
scheme undertakes N updates of the estimate of wo and one update
of the estimate of each ξok per time step, we assume that

µI−NSPEξk
= µncξk = µncw = NµI−NSPEw

where µI−NSPEa and µnca stands for the step-size used by the I-
NSPE and the non-cooperative schemes to estimate the vector a, re-
spectively. This way, we get a fair comparison between both strate-
gies.

Figure 3 depicts the learning behavior of the two schemes in
terms of the network mean-square deviation (MSD) associated with
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Fig. 3. Learning behavior of network MSD.

the estimation of w and ξk. Each network MSD is the result of av-
eraging the local MSDs associated with the estimation of w and ξk
at each node. To generate each plot, we have averaged the results
over 50 independent experiments where we assumed Q = 2 PUs,
N = 10 SUs and J = 8 Gaussian basis functions. Furthermore,
we have considered that each SU scans L = 40 channels between
30 MHz and 45 MHz and that each path-loss coefficient follows
ptk,i(dtk,i) = (dtk,i/d0)−2 + ntk, where ntk denotes model noise,
d0 is a reference distance and dtk,i accounts for the distance be-
tween the t-th transmitter and the k-th SU at time i. Under this
setting and for SNRs varying from 7 dB to 15 dB across the net-
work, due to the cooperation between the nodes, we observe that the
proposed scheme outperforms the non-cooperative one, especially
when estimating wo. Although there is no exchange of estimates of
ξok throughout the network, the I-NSPE scheme has enhanced rate of
convergence in comparison with the non-cooperative strategy. This
is a consequence of the coupling between the two estimation tasks
undertaken by I-NSPE.

5. CONCLUSION

We have addressed a novel NSPE problem where the estimation in-
terests of the nodes consists of a set of local parameters and a set of
network global parameters. To do so, we have proposed a distributed
adaptive scheme where a local LMS is run at each node in order to
estimate each set of local parameters. Coupled with all these local
estimation processes, the parameters of global interest are estimated
by a global LMS implemented at all nodes under an incremental
mode of cooperation. After showing that the proposed scheme con-
verges to the MMSE solution of the centralized problem, computer
simulations have been provided to illustrate the performance in the
context of cooperative spectrum sensing in cognitive radio networks.
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