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ABSTRACT
We propose a proximal splitting approach to regularized distributed
estimation over networks employing diffusion adaptation strategies.
Playing a central role in the proposed framework is the so-called
proximity operator, which is a generalization of the convex projec-
tion mapping, that enables us to handle convex regularization terms
efficiently. The diffusion algorithms developed using the proximal
formalism endow networks with new learning abilities and open up
possibilities for enhancing performance of the networks by utilizing
more general convex penalties. We present performance analysis of
the proposed method and provide simulations to demonstrate its fea-
sibility in recovering sparse signals.

Index Terms— Adaptive networks, diffusion strategies, energy
conservation, proximity operator, sparsity

1. INTRODUCTION

Distributed adaptive estimation has recently emerged as an attractive
and important research area due to its possible applications in wire-
less sensor networks, dynamic resource allocation and bio-inspired
processing [1, 2, 3, 4, 5, 6]. In the typical setting, a set of nodes are
allowed to exchange information with each other and perform local
computations to improve their own estimates, which are then used
to collectively arrive at a solution to the problem. Among the most
popular modes of cooperation are the so-called diffusion adaptation
strategies [1, 2, 7, 8, 9, 10], which have been proven effective in
exploiting the time and spatial diversity of the data, thereby maxi-
mizing the learning and tracking abilities of networks.

In this paper, we consider the distributed estimation problem
where the parameter of interest is known to satisfy some signal prop-
erty such as sparsity. To this end, we investigate a variational formu-
lation of the estimation problem with regularization represented by
some convex penalty term such as the `1 norm. Exploiting a priori
signal information in this manner leads to improved estimation per-
formance as have been demonstrated in works such as the Lasso [11]
and sparsity-aware adaptive filtering [12, 13, 14, 15].

The main objective of this work is to solve the regularized dis-
tributed estimation problem by developing a diffusion implementa-
tion of the forward-backward splitting method [16, 17, 18, 19]. An
important advantage afforded by the proposed design is the use of the
proximity operator [20], which enables us to exploit operations that
are beyond convex projections [19]. In particular, we will be able
to employ the well-known soft-thresholding operation [21], which is
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an effective tool in a variety of image recovery problems. Although
proximal algorithms in general may have limited impact on actual
numerical performance, they are considered to be more stable than
gradient and subgradient iterations [22]. Moreover, diffusion proxi-
mal algorithms open up new possibilities in the consideration of cost
functions or constraints in adaptive networks. We also have at our
disposal several results that aim to improve the performance of these
methods such as acceleration and overrelaxation [23, 24, 25], and us-
ing similar techniques may further enhance the performance of the
adaptive network. To gain insight into the behavior of the proposed
diffusion algorithm, we appeal to the celebrated energy conserva-
tion framework [26, 8] to obtain mean and mean-square convergence
guarantees and present simulations that demonstrate improved detec-
tion of sparsity compared to the standard and sparsity-aware diffu-
sion least-mean-squares (LMS) algorithms [1, 27].

1.1. Relation to Prior Work

Diffusion adaptation strategies were investigated in the seminal work
[1] and further discussed and developed in [7, 28, 9, 2, 29]. To
improve the performance of diffusion networks in the presence of
sparse signals, subgradient-based diffusion LMS filters were pro-
posed in [27, 30]. The present work provides an alternative frame-
work for developing regularized diffusion algorithms using the prox-
imal formalism, which is related to the set-theoretic formulation
of diffusion algorithms investigated in [31, 32, 33]. The use of
the proximal forward-backward splitting in an adaptive setting has
been already considered in [34], where the technique was shown
to outperform conventional algorithms in detecting sparsity. This
paper, on the other hand, is focused on the design of an adaptive
and distributed implementation of the algorithm, and we present a
mean-square performance analysis of the proposed method based on
[7, 27] to determine any relation with existing algorithms.

1.2. Notation

Let N be the set of all nonnegative integers and RM denote the M -
dimensional Euclidean space with norm ‖·‖. We use capital letters to
represent matrices and small letters to denote vectors. Moreover, we
use boldface characters to denote random variables and regular font
characters for realizations and other deterministic quantities. We use
I to denote an identity matrix of appropriate dimensions, Tr(·) to
denote the trace of a matrix, diag{· · · } as the diagonal matrix con-
sisting of its entries and col{· · · } to denote a column vector obtained
by stacking its entries. The expectation is denoted by E[·].
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2. REGULARIZED DISTRIBUTED ESTIMATION

2.1. Problem Formulation

Consider a network with N nodes in a predefined topology. Sup-
pose that at each time i ≥ 0, each node k has access to a mea-
surement dk(i) ∈ R of some random process dk(i) and a regres-
sion vector uk,i ∈ R1×M corresponding to a realization of a ran-
dom process uk,i. Furthermore, suppose that uk,i is correlated
with dk(i) and that we have a positive definite covariance matrix
Ru,k := EuTk,iuk,i. We assume the data to be related via the model

dk(i) = uk,iw
◦ + vk(i), (1)

where w◦ ∈ RM is an unknown vector we wish to estimate and
vk(i) ∈ R is a zero mean random variable with variance σ2

v,k, which
is independent of uk,i for all k and i, and independent of vl(j) for
l 6= k or i 6= j.

Our main objective in this paper is to develop the proximal
forward-backward splitting method for minimizing the following
cost in an adaptive and distributed manner:

Jglob(w) :=

N∑
k=1

{
(dk(i)− uk,iw)2 + γR(w)

}
(2)

where R(w) represents some real-valued convex penalty function
and γ > 0 is a regularization parameter. To effectively distribute
adaptation among the nodes, we will employ the diffusion strategy
as developed in [1, 7, 2, 27] to minimize the cost Jglob(w).

2.2. Proximity Operators and Proximal Splitting

We first recall the forward-backward splitting method before we de-
scribe its diffusion implementation. Consider the time varying cost
function

Ji(w) = Fi(w) + γRi(w) (∀i ∈ N) (3)

where Ri : RM → (−∞,+∞] is lower semicontinuous, convex
and not identically +∞ while Fi is a differentiable convex function
with an L-Lipschitz continuous gradient, that is, (∀(x, y) ∈ RM ×
RM ) ‖∇Fi(x) − ∇Fi(y)‖ ≤ L‖x − y‖ for some L > 0. Then,
under the above hypotheses on the functions Fi and Ri, the cost (3)
may be suppressed by the adaptive proximal forward-backward split-
ting (APFBS) algorithm [34], which is described by the following:
Fix ε ∈ (0,min{1, 1/L}) and w−1 ∈ RM . Let µ ∈ [ε, 2/L − ε].
For each i ∈ N, repeat:

wi = proxµγRi
(wi−1 − µ∇wFi(wi−1)) (4)

where prox is the so-called proximity operator of index κ ∈
(0,+∞) defined by

proxκRi
: RM → RM : w 7→ arg min

y∈RM

(
Ri(y) +

1

2κ
‖w − y‖2

)
.

(5)
The APFBS algorithm is a time-varying extension of the proxi-

mal forward-backward splitting method [19], and is known to satisfy
the monotone approximation property [35].

To demonstrate the use of the proximal method for sparse signal
recovery, we consider two convex regularization terms as popular-
ized in compressed sensing. The first one is the `1 norm defined by

R(wi) := ‖wi‖1 :=

M∑
m=1

|wi(m)|, where wi(m) represents the m-

th entry of the vector wi. This choice leads to the proximity operator
called soft-thresholding which is given by

proxκ‖·‖1wi =

M∑
m=1

soft(wi(m), κ)bm,

where soft(x, κ) := max(|x| − κ, 0)sgn(x), with sgn representing
the signum or sign function, and {bm}Mm=1 is the standard orthonor-
mal basis of RM . The second regularization term we consider is
based on the concept of reweighting [36, 15] that seeks to improve
the efficiency of the `1 norm, which gives rise to its weighted ver-

sion defined by ‖wi‖1,ω :=

M∑
m=1

ω(i)
m |wi(m)|, where ω(i)

m are pos-

itive weights that are updated at each iteration as follows: for each
i ∈ N, ω(i)

m := (|wi−1(m)|+ %)−1 for m = 1, 2, . . . ,M and some
% > 0. The associated proximity operator is the soft-thresholding
with weighting shown below:

proxκ‖·‖1,ωwi =

M∑
m=1

soft(wi(m), w(i)
m κ)bm

Remark 2.2.1 Note that other regularization terms such as those
for detecting group sparsity [37] and for total variation filtering or
denoising [38] can also be considered under this proximal formal-
ism. We provide details regarding these and consider a variation of
the forward-backward splitting in an extended version of this paper.

2.3. Diffusion Adaptation

To promote higher levels of interaction and information exchange
among the nodes, we use an approach based on [7]. For this purpose,
consider an N × N matrix C with nonnegative entries {clk} that
satisfy C1 = 1, CT1 = 1 and clk = 0 if l /∈ Nk, where 1 denotes
the N ×1 vector with unit entries andNk denotes the neighborhood
of node k (which includes node k itself). Using these coefficients,
we may consider the modified local cost function

J loc
k (w) :=

∑
l∈Nk

clk(dl(i)− ul,iw)2 + γR(w). (6)

Now by adding a combination step before or after the adaptation
step, one may arrive at different diffusion adaptation strategies. Here
we focus only on an adapt-then-combine diffusion method. Together
with the combination matrix C, we introduce a matrix A composed
of nonnegative weight coefficients {al,k} which satisfy AT1 = 1

and alk = 0 if l /∈ Nk. The proximal diffusion algorithm can now
be presented as follows. Set wk,−1 = 0 ∈ RM for all k. Given the
nonnegative coefficients {cl,k, al,k} satisfying the properties above,
for each time i ≥ 0 and for each node k, repeat:

ψk,i = wk,i−1 + µk
∑
l∈Nk

cl,ku
T
l,i[dl(i)− ul,iwk,i−1]

χk,i = proxµkγR
ψk,i

wk,i =
∑
l∈Nk

al,kχk,i

(7)

Observe that (7) is able to implement information exchange in
the gradient step and incorporate the regularization parameter in the
adaptation step similar to the sparse diffusion LMS developed in
[27], in contrast also with the approach in [30].
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3. PERFORMANCE ANALYSIS

In this section, we consider the estimates wk,i as realizations of a
random process wk,i and determine the performance of algorithm
(7) in terms of its mean-square behavior. To proceed, we introduce
the error vectors w̃k,i = w◦ − wk,i, ψ̃k,i = w◦ − ψk,i, χ̃k,i =
w◦ − χk,i and the global quantities

wi = col{w1,i, · · · ,wN,i}, ψi = col{ψ1,i, · · · ,ψN,i},

w̃i =

 w̃1,i

...
w̃N,i

 , ψ̃i =


ψ̃1,i

...
ψ̃N,i

 , χ̃i =

 χ̃1,i

...
χ̃N,i

 .
Furthermore, we consider the block diagonal matrix

M = diag{µ1IM , . . . , µNIM}

and the extended block weighting matrices C = C ⊗ IM and A =
A⊗IM , where⊗ denotes the Kronecker product operation. We also
introduce the quantities

Di = diag

{ ∑
l∈N1

cl1u
T
l,iul,i, . . . ,

∑
l∈NN

clNu
T
l,iul,i

}

gi = CT col{uT1,iv1(i), . . . ,uTN,ivN (i)}

We then conclude that the error vectors satisfy the recursion

w̃i = AT [I −MDi]w̃i−1 −ATMgi + γATMPµγ(ψi), (8)

wherePκ is a clipping or limiter function defined byPκ(x) := (|x+
κ| − |x− κ|)/(2κ) that is applied component-wise, i.e., Pκ(xi) :=
col{Pκ(x1,i), . . . ,Pκ(xN,i)}. This results from the fact that the
soft-thresholding and the limiter function satisfy the following prop-
erty: soft(x, κ) = x−κPκ(x). In fact, operatorPκ is the projection
onto the setB∞(0; 1) := {x ∈ RM |‖x‖∞ ≤ 1}, where ‖·‖∞ is the
`∞ norm. We have thus shown that (7) can be expressed in a form
similar to those of the subgradient-based diffusion LMS algorithms.
Observe further that compared to the zero-attracting (ZA) diffusion
LMS in [27], the update based on Pµγ exerts a linear attraction in
the range (−µγ, µγ), and that the sign function may be seen as the
limiting behavior of Pµγ as µγ becomes very small.

Now note that due to the nonlinearity of (4), the function Pκ in
(8) is dependent on the noise sequence. We need some simplifying
assumptions to make the analysis more tractable. Appealing to the
nonexpansiveness of the proximity (or projection) operator [19, 39],
i.e., ‖proxκRx− proxκRy‖ ≤ ‖x− y‖, we see that ‖Pµγ(ψk,i)−
Pµγ(wk,i−1)‖ ≤ µk

∑
l∈Nk

cl,k‖uTl,i[dl(i) − ul,iwk,i−1]‖. As-
suming that the step-sizes are sufficiently small and that at steady-
state, dl(i) − ul,iwk,i−1 is small for each l ∈ Nk, we employ
Pµγ(wk,i−1) instead ofPµγ(ψk,i). We will make use of this simpli-
fying assumption to obtain a more manageable steady-state analysis.

3.1. Mean Convergence

By taking the expectation of both sides of (8) and assuming the spa-
tial and temporal independence of the regressors, we conclude that
the mean-error vector evolves according to the following dynamics:

Ew̃i = AT (I −MD)Ew̃i−1 + γATMEPµγ(ψi)

where D := EDi. Recall that a square matrix X is called stable if
X i → 0 as i → +∞. Since Pµγ(ψi) has bounded entries, algo-
rithm (8) converges in the mean if AT (I −MD) is a stable matrix,
and this is guaranteed if I − MD is stable, as the entries on the
columns of AT add up to one andM is diagonal. Hence we obtain:

Theorem 3.1 The diffusion algorithm (7) asymptotically converges
in the mean for any initial condition if the step-sizes satisfy:

0 < µk <
2

λmax(
∑N
l=1 clkRu,l)

, k = 1, . . . , N (9)

where λmax(X) denotes the maximum eigenvalue of a symmetric
positive definite matrix X . Moreover, we have the following bias:

bias := lim
i→+∞

Ew̃i = γBATM lim
i→+∞

EPµγ(wi−1) (10)

where B := [I −AT (I −MD)]−1.

As one may expect, the regularization parameter γ and the step-
sizes {µk} affect the bias of the estimates as shown above. Thus,
we need to set a small γ to minimize the bias. These properties were
also observed for the sparse diffusion LMS developed in [27].

3.2. Mean-Square Convergence

Here we investigate the behavior of the steady-state mean-square de-
viation (MSD) at each node k. Under the energy conservation frame-
work [7, 27] and using the independence assumptions, we establish
the following variance relation for (7):

E‖w̃i‖2Σ = E‖w̃i−1‖2Σ′ +E[gTiMAΣATMgi] + ∆Σ,i(γ) (11)

where Σ is any symmetric positive definite matrix that we are free
to choose, with Σ′ := E(I − DiM)AΣAT (I − MDi) and
∆Σ,i(γ) := γ2ηΣ,i − γζΣ,i for some terms ζΣ,i and ηΣ,i given by

ηΣ,i := E‖Pµγ(ψi)‖
2
MAΣATM ≥ 0

ζΣ,i := 2MEPµγ(ψi)AΣATMgi
− 2EPµγ(ψi)

TMAΣAT [I −MDi]w̃i−1

Note that we have used an assumption that vk(i) is independent of
ψk,i for each k, which is quite reasonable at steady-state. We may
also consider using our simplifying approximation on Pµγ(ψi) to
obtain an estimate for the steady-state behavior. Now setting G =
E[gig

T
i ], we can rewrite the variance relation (11) in the form

E‖w̃i‖2Σ = E‖w̃i−1‖2Σ′ + Tr[ΣATMGMA] + ∆Σ,i(γ) (12)

where Tr(·) denotes the trace operator. We turn to the vectorized
form to simplify (11). Let σ = vec(Σ) and σ′ = vec(Σ′), where the
vec operator stacks the columns of Σ on top of each other. We now
use the notations ‖w‖2σ and ‖w‖2Σ to denote the same quantity. Us-
ing the Kronecker product property vec(UΣV ) = (V T⊗U)vec(Σ),
we can vectorize Σ′ and replace it by the simpler linear vector rela-
tion σ′ = Fσ where the matrix F is given by

F = (I ⊗ I){I − I ⊗ (DM)− (DTM)⊗ I

+ E[(DT
iM)⊗ (DiM)]}(A⊗A). (13)

Using the property Tr(ΣX) = vec(XT )Tσ, we can rewrite (12) as:

E‖w̃i‖2σ = E‖w̃i−1‖2Fσ + [vec(ATMGTMA)]Tσ + ∆Σ,i(γ)
(14)

Similar to [27], we have the following mean-square stability guaran-
tee for the diffusion forward-backward algorithm:
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Theorem 3.2 For any initial condition, the diffusion algorithm (7)
asymptotically converges in the mean-square sense if the step-sizes
are chosen such that they satisfy (9) and that the matrix F given by
(13) is stable.

Now assuming the matrix I −F is invertible, we obtain the fol-
lowing from (14) in steady-state:

lim
i→+∞

E‖w̃i‖2(I−F)σ = [vec(ATMGTMA)]Tσ + ∆Σ (15)

where ∆Σ := limi→+∞∆Σ,i(γ). The steady-state expression (15)
allows us to derive the MSD through the proper selection of the free
weighting parameter σ or Σ [7, 27]. For instance, if we define the
steady-state MSD at node k by MSDk := lim

i→+∞
E‖w̃k,i‖2, we can

compute it by considering a weighting using a block matrix Qk that
has an identity matrix at block (k, k) and zeros elsewhere, with vec-
torized form qk = vec(diag(ek) ⊗ IM ) where ek being the col-
umn vector with unit entry at position k and zeros elsewhere. Thus,
choosing σk = (I −F)−1qk, we obtain

MSDk = [vec(ATMGTMA)]T (I −F)−1qk + ∆Σk (16)

Note that the expressions above revert to those obtained for the dif-
fusion LMS when γ = 0. Now by treating Pµγ as the proximity op-
erator of the indicator function on the setB∞(0; 1), we may express
it in terms of a subgradient [22] and by using similar arguments in
[27], we can show that by selecting some appropriate value for µγ,
the term ∆Σk will be negative if w◦ is sparse. Hence, the proxi-
mal diffusion algorithm will have better MSD compared to diffusion
LMS. However, this will not hold in general if w◦ is not sparse, and
therefore in such cases, the proximal diffusion algorithm is expected
to perform worse compared to the standard diffusion algorithm.

4. SIMULATION RESULTS

We now present simulation results to demonstrate the advantage of
the designed diffusion forward-backward method compared to its
subgradient-based sparse diffusion LMS formulation in [27]. We
consider the proximal diffusion algorithm based on the `1 norm and
its counterpart diffusion ZA-LMS, and we also use their reweighted
versions, which for the subgradient-based algorithm leads to what is
called the diffusion RZA-LMS algorithm. We compare these algo-
rithms by examining their learning curves at steady-state.

We consider a connected network with N = 20 nodes. The re-
gressors are of length M = 100, zero-mean Gaussian, and spatially
and temporally independent. The background white noise power is
randomly set to σ2

v,k ∈ (0.01, 0.1) for each node k. The unknown
sparse vector has two nonzero entries that are chosen randomly, with
values between 0 and 1. We use a uniform step-size of µ = 0.1 for
all simulations. On the other hand, the regularization γ is set as
follows: for the `1 norm-based, γ = 0.1 and for the reweighted ver-
sion, γ = 0.001 with % = 0.01. We also use these parameters for
the corresponding sparse diffusion LMS algorithms. Furthermore,
we consider the relative degree rule [7] as our combination strategy
and we do not consider any measurement exchange, i.e.,C = I . The
expectation is calculated by averaging 200 independent experiments.

Figure 1 shows the learning behavior of each algorithm in terms
of the network MSD, which is defined as the average MSD across all
nodes in the network. Observe that the proposed algorithms perform
better than their diffusion LMS counterparts at steady-state, and this

outcome is true throughout the network as seen in Figure 2. Notice
that due to reweighting, the diffusion RZA-LMS reaches a lower
steady-state value compared to the diffusion forward-backward al-
gorithm, but using the same reweighting technique for the diffusion
forward-backward algorithm results to a better effect.

We also considered the case where the system is completely
non-sparse. As shown in Figure 3, the standard diffusion LMS
outperforms the diffusion forward-backward and ZA-LMS, but the
reweighted versions were able to perform comparably to the dif-
fusion LMS. Moreover, in both cases, we see that the proximal
diffusion algorithms outperform their subgradient-based counter-
parts. Thus, as in [27], we have shown that the reweighted algorithm
yields a slight performance loss only on the case where the system
is completely non-sparse.
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5. CONCLUSIONS

We proposed a proximal splitting approach to regularized distributed
estimation over adaptive networks. A diffusion implementation of
the proximal forward-backward splitting method was developed, and
by exploiting properties of the proximity operator, we showed that
the mean-square performance analysis can be handled in a way sim-
ilar to that of subgradient-based algorithms. Simulations demon-
strated the advantage of using the proposed method compared to
other diffusion LMS algorithms in detecting sparsity.
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