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ABSTRACT

In this paper, a distributed adaptive algorithm for sparsity–aware
learning in diffusion networks is developed. The algorithm follows
the greedy roadmap for sparsity along with the adapt–combine co-
operation strategy, based on the LMS rationale for adaptivity. A
bound on the error norm between the obtained estimates and the tar-
get vector is computed, and the algorithm is shown to converge in the
mean under some general assumptions. Finally, comparative experi-
ments with a recently developed sparsity–promoting diffusion LMS
demonstrate the enhanced performance of the proposed algorithm.

Index Terms— Adaptive distributed learning, Sparsity–aware
learning, Greedy techniques.

1. INTRODUCTION

This paper considers the task of sparsity–aware learning in the con-
text of a distributed environment in an online setting. The proposed
novel algorithm bears its progeny, from its sparsity–promoting po-
tential, to the family of greedy algorithms. Its adaptive nature is an
offspring of the celebrated LMS family and its distributed learning
potential complies with the so–called diffusion topology.

The diffusion topology is the main alternative to the incremental
topology for decentralized distributed processing. In the incremen-
tal topology, each node communicates with only one node and the
network has a cyclic topology, e.g., [1]. In the diffusion topology
each node communicates with a number of neighbouring nodes, e.g.,
[2, 3]. The diffusion topology is easier to be adopted in real-time ap-
plications and it is more robust to node failures.

In this paper, we consider a diffusion network and the goal is
to estimate, adaptively, an unknown target parameter vector, which
is common to all nodes and it is also known to be sparse. Diffu-
sion adaptive algorithms have been proposed in the context of the
diffusion Least Mean Squares (LMS), [2], the diffusion Recursive
Least Squares (RLS), [4], and the projection based Adaptive Pro-
jected Subgradient Method [5, 6]. The task of developing sparsity–
promoting algorithms for distributed learning has only very recently
been addressed, in [7] for the batch learning scenario and in [3, 8]
for the online time adaptive case.

The majority of the sparsity promoting adaptive algorithms ex-
ploit sparsity by embedding into the optimization problem an ℓ1–
norm constraint, in its regularized form (see for example [9–12]) or

Email: {schouv,gmil,kalou,stheodor}@di.uoa.gr.
This research has been co-financed by the European Union (Euro-

pean Social Fund ESF) and Greek national funds through the Opera-
tional Program ”Education and Lifelong Learning” of the National Strate-
gic Reference Framework (NSRF) – Research Funding Program: THALIS–
UOA–SECURE WIRELESS NONLINEAR COMMUNICATIONS AT THE
PHYSICAL LAYER.

via projections on the related ℓ1–ball [13] or via generalized thresh-
olding (non–convex) operators [14]. It has been established that,
by exploiting the underlying sparsity of the target vector, leads to
significantly improved convergence speeds compared to the uncon-
strained algorithms, see, e.g., [15], for a related review. Another phi-
losophy, which adaptively exploits sparsity of the unknown vector,
employs greedy techniques, e.g., [16]. In a nutshell, greedy tech-
niques estimate the positions containing the non–zero coefficients
of the unknown target vector to be estimated, and then perform the
computations in this subset.

A new distributed greedy algorithm is developed in this paper.
More specifically, a signal, known as proxy, is computed recursively
at each node, based on the statistics of the measurements. In the se-
quel, an LMS iteration is performed, restricted on a properly selected
subset, which is chosen to comprise the s (user–defined) dominant
indices of the proxy. To the authors’ knowledge, this is the first time
that a greedy type sparsity–promoting algorithm is developed for the
adaptive distributed learning scenario.

The theoretical properties of the algorithm are discussed and ex-
perimental results reveal that the proposed scheme outperforms the
existing distributed adaptive LMS–based scheme.

Notation: Vectors will be denoted by boldface letters and matri-
ces by uppercase boldface letters. Moreover, the symbols (·)T and
E[·] will stand for the transpose and the expectation operators re-
spectively. The set of all real numbers and the set of non–negative
integers will be denoted by R and Z respectively. In addition, the
term [A]ij stands for the ij–th element of matrix A. Finally, given
a vector w, the term supps(w), called support set, stands for the
subset containing the s non–zero coefficients of w. The cardinality
of a set S is denoted by |S|.

2. PROBLEM STATEMENT

Our goal is to estimate a sparse unknown vector w∗ ∈ Rm exploit-
ing measurements collected at the N nodes of a network in accor-
dance to the diffusion topology, e.g., [17]. We denote the node set by
N = {1, . . . , N}, and we assume that each node is able to exchange
information, with a subset of N , Nk, k = 1, . . . , N , commonly re-
ferred to as the neighbourhood of k. Each node k, at each time
instance, has access to the output measurement, dk(n) ∈ R, and the
input vector, xk(n) ∈ Rm, which are related via the linear model:

dk(n) = x
T
k (n)w∗ + vk(n), ∀k ∈ N , ∀n ∈ Z, (1)

where the term vk(n) stands for the additive noise process at each
node. The unknown target vector is assumed to be s–sparse, i.e.,
∥w∗∥ℓ0 ≤ s ≪ m, where with ∥ · ∥ℓ0 = |supps(·)| we denote
the ℓ0 “norm”. In sparsity–aware learning, it is usually assumed
that we have a prior knowledge of the approximate sparsity level
(denoted by s), i.e., the number of non–zero coefficients that actu-
ally contribute to the output, while the set of indices corresponding
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Table 1. The Greedy Diffusion LMS (GreeDi–LMS) Algorithm
Algorithm description Complexity

wk(0) = 0,pk(0) = 0,Rk(0) = 0. {Initialization}
0 < λ ≤ 1 {Forgetting factor}
k ∈ N {Node Index}
For n := 1, 2, . . . do
1: pk(n) =

∑n
j=1 λ

n−j xk(j)dk(j)
n

= n
n+1

λpk(n− 1) + xk(n)dk(n)
n+1

{Form cross-correlation} O(m)

2: Rk(n) =
∑n

j=1 λ
n−j xk(j)x

T
k (j)

n
= n

n+1
λRk(n− 1) +

xk(n)xT
k (n)

n+1
{Form autocorrelation} O(m2)

3: pk(n) =
∑

l∈Nk

bl,kpl(n) {Combine cross–correlation} O(|Nk|m)

4: Rk(n) =
∑

l∈Nk

bl,kRl(n) {Combine autocorrelation} O(|Nk|m2)

5: Ŝk,n = supps

(
wk(n− 1) + µ̃k(pk(n)−Rk(n)wk(n− 1))

)
{Identify large components} O(m)

6: ψk(n) = wk|Ŝk,n
(n− 1) + µkxk|Ŝk,n

(n)[dk(n)− xT
k|Ŝk,n

(n)wk|Ŝk,n
(n− 1)] {LMS iteration} O(s)

7: w̃k(n) =
∑

l∈Nk

cl,kψl|Ŝl,n
(n) {Combine local estimates} O(|Nk|s)

8: S̃k,n = max (|w̃k(n)|, s) {Obtain the pruned support} O(m)

9: wk|S̃k,n
(n) = w̃k|S̃k,n

(n),wk|S̃c
k,n

(n) = 0 {Prune the combined estimates} O(|Nk|s)

end For

to non–zero elements remains unknown. Hence, when seeking for
an s–sparse vector, our effort is twofold; first, one has to estimate
where the s non–zero coefficients lie, and then obtain estimates of
their corresponding values. Classical non–distributed adaptive algo-
rithms estimate the unknown parameters based on the input/output
information. In adaptive distributed learning, at each time instance
the nodes seek for a common unknown vector and cooperate with
each other, instead of acting as individual learners. More specifi-
cally, apart from the locally sensed measurements, information re-
ceived by the neighbourhood is also exploited in order to produce
estimates. This information comprises the currently available esti-
mates of the unknown vector, as well as measurements which are
sensed by the neighbouring nodes [2]. It is by now well established
that the cooperation among the nodes leads to an enhanced perfor-
mance, compared to the case where each node operates individually
[2]. Usually, the cooperation among the nodes implies that each node
receives estimates from the neighbourhood, and then takes a convex
combination of them. Several modes of cooperation have been stud-
ied in the literature including the:

1. Adapt Combine [2]: In this strategy, each node computes
an intermediate estimate by exploiting locally sensed mea-
surements. After this step, each node receives these estimates
from the neighbouring nodes and combines them, in order to
produce the final estimate.

2. Combine Adapt [6, 17]: Here, the combination step pre-
cedes the adaptation one.

3. Consensus Based [18]: In this category, the computations
are made in parallel and there is no clear distinction between
the combine and the adapt steps.

In this paper, the Adapt Combine strategy is followed, since it has
been verified that it converges faster to a lower steady state error
floor compared to the other methodologies [19].

3. THE DISTRIBUTED GREEDY SPARSITY–PROMOTING
LMS

Under a centralized operating mode, greedy algorithms seek to find
an s–sparse approximation tow∗ by iteratively applying the follow-
ing two steps:

Greedy or subset selection: Compute the support of the
sparse vector with the aid of a signal which is referred to as
proxy signal;

Greedy update: Perform the estimation/adaptation step re-
stricted to that set.

The advantages of such an approach lie in the speed of execution and
high–performance. Application of the greedy principle to decentral-
ized operation needs to address two issues: the combined filter up-
dating and the support set consensus, which implies that the nodes
exchange information in order to “agree” to the same support set.

The majority of greedy algorithms makes decisions for the sup-
port set based on a signal proxy of the form.

XT
k (n) (dk(n)−Xk(n)ŵk) ≈XT

k (n)Xk(n) (w∗ − ŵk) ,

where Xk(n) = [xk(1),xk(2), · · · ,xk(n)]
T and dk(n) =

[dk(1), dk(2), · · · , dk(n)]T . It is important to note that for such
a proxy, the algorithm at every iteration, selects distinct indices. In
other words, the error residual is orthogonal to the indices that have
been previously chosen. An enhanced proxy, which allows multiple
selection of indices, has the following form,

supps or 2s

(
|XT

k (n) (dk(n)−Xk(n)ŵk) |
)
∪ supps (|ŵk|) ,

and in such cases, the estimation step is restricted to a set of indices
larger than s. However, both of these signals are not adequate for
distributed learning, since they carry time–varying information from
local estimates and hence pose problems to the support set consen-
sus. In other words, distributed learning aims at finding a proxy,
which is close tow∗ and not to (w∗ − ŵk).
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Towards this end, we distinguished two different strategies to se-
lect the signal proxy, which serve the needs of adaptive distributed
learning. The simplest one is based on a cross–correlation vector
pk(n) = E[xk(n)dk(n)], where each node k ∈ N enhances its
estimate by cooperating with its neighbourhood Nk via the intro-
duction of a diffusion step [2] (e.g., see steps 1 & 2 of Table 1). The
second one, which will be followed in this work, is shown exper-
imentally to achieve faster support set recovery, since it takes into
account the current local estimate, and it is given by [20]

wk(n− 1) + µ̃k(pk(n)−Rk(n)wk(n− 1)) ≈ w∗, (2)

where wk(n − 1), µ̃k, pk(n) and Rk(n) are defined in Table 1.
The proposed proxy constitutes a distributed exponentially weighted
extension of its centralized form (addressed in [20]).

Let us now briefly discuss the core steps of the proposed Greedy
Diffusion LMS (GreeDi–LMS), of Table 1. Steps 1–5 constitute the
distributed greedy subset selection process. Steps 1–4 create, in a
cooperative manner, the basic elements needed for the proxy update
and step 5 selects the s–largest components. The distributed greedy
update is established via the Adapt–Combine LMS (steps 6 & 7) of
[2]. The diffusion steps 2, 4 and 7 bring the local estimates closer to
the global estimates based on the entire network [2]. Finally, because
we are operating in a network of different nodes, some of them will
achieve support set convergence faster than others. Therefore, at a
node level, we pay more attention to the s–dominant positions via
the introduction of a pruning step directly after the adaptation in the
combined greedy update, steps 8 & 9.

Finally, the weights, bl,k, cl,k, used to fuse the information com-
ing from the neighbourhood, can be chosen with respect to several
combination rules. Two well known representatives are the Metropo-
lis rule and the Uniform rule [17]. The Metropolis weights are given
by

ck,l =


1

max{|Nk|,|Nl|}
, if l ∈ Nk and l ̸= k,

1−
∑

l∈Nk\k
ck,l, if l = k,

0, otherwise,

and the uniform ones equal to

ck,l =

{
1

|Nk| , if l ∈ Nk,

0, otherwise.

Remark 1. The computational complexity of GreeDi–LMS is
linear except from the update of Rk(n), which requires O(m2) op-
erations per iteration. However, exploitation of the shift structure
in the regressor vector allow us to drop the computational cost to
O(m), e.g., [21].

Remark 2. Another way to reduce complexity is by updating
the gradient part of the proxy recursively, as it was done in [16] for
the centralized case. However, such an update, although it is compu-
tationally lighter, it results in slower support convergence, since the
resulting exponentially weighted average contains all wk(t), t :=
1, . . . , n− 1 and not only the current estimate.

4. CONVERGENCE ANALYSIS

This section addresses the performance of the proposed algorithm
in terms of steady–state behaviour. As it is well known, the LMS
converges in the mean to the true parameter vector. This property is
also satisfied in diffusion LMS schemes, e.g., [2]. Nevertheless, the
diffusion–based sparsity–promoting LMS [8] is not unbiased, due to

the convex regularization term embedded in the cost function. In
contrast GreeDi–LMS enjoys unbiasedness as demonstrated below.

We introduce the following assumptions:
(A1.) The input and output signals satisfy (1) and are ergodic pro-
cesses, i.e., lim

n→∞
1
n
dk(n)xk(n) = pk := E[dk(n)xk(n)] and

lim
n→∞

1
n
xk(n)x

T
k (n) = Rk := E[xk(n)x

T
k (n)].

(A2.) The input is a white noise process of variance σ2
k, i.e.,

Rk = σ2
kIm.

Theorem 1. Let µ̃k(n) = ν̃−1
k (n), where

ν̃k(n) =
∑
l∈Nk

bl,k
1

m

m∑
i=1

[Rl(n)]ii.

Then, ∃n0 ∈ Z such that Ŝk,n = S, ∀n ≥ n0, ∀k ∈ N .

Sketch of proof ∗ . The ergodicity assumptions, in conjunction
with standard bounded property of the LMS estimate ψk(n) im-
ply that the various signal proxies converge to the average of
the exponentially weighted cross–correlation term, i.e., σ−2

k pk,
where σ2

k :=
∑

l∈Nk
bl,kσ

2
l and pk :=

∑
l∈Nk

bl,kpl. Since
Rk are diagonal and thus supps

(
σ−2
k pk

)
= S, which occurs

form the Wiener–Hopf equation, e.g., [21], which states that
σ−2
k pk = σ−2

k

∑
l∈Nk

bl,kRlw∗. Therefore, the s dominant el-
ements of the proxy eventually coincide with those of pk.

The main conclusion drawn from Thm. 1 is that the true support
turns out to be computed in a finite number of steps. This is a direct
consequence of the fact that the proxy converges asymptotically to a
vector, which has the same support as the unknown one. The physi-
cal interpretation of the above statement is that the distance between
these two vectors will be sufficiently small, so that the s largest coef-
ficients of the proxy will be in those positions as indicated by the true
support. This has two direct implications, which can be explored
further in order to reduce computational resources. First, once the
signal proxy has converged then the algorithmic scheme of Table 1
drops to the Adapt–Combine LMS presented in [2] and hence the
proof of convergence in the mean follows in a similar fashion. Sec-
ond, if the signal proxy remains constant for a number of consequent
iterations we may then stop performing the proxy selection process
of the algorithm.

In addition, it follows from Thm. 1 that the proposed algorithm
avoids the major obstacle of (non–weighted) ℓ1–minimization meth-
ods, which cannot guarantee to recover the correct support and at
the same time estimate the nonzero entries of w∗, consistently. In
sparse ℓ1 regularized LMS–like algorithms, this is reflected by the
introduction of a bias term in the mean converged vector.

The following result is also established in [22]. Given a dis-
tributed sparse adaptive filter, like the one described in Table 1, we
are interested in studying the ℓ2–norm of the error vector wk(n) −
w∗ at each node in the steady–state.

Theorem 2. Each node k ∈ N produces an s–sparse approxima-
tion wk(n) and the following asymptotic error bound for the whole
network occurs:

ϵ(n) ≤ 2N max
k∈N

{
3(1− µkλk) +

√
2δ3s,k(λ, n) (1 + µkλk)

}
N∑

k=1

ϵ
(2)
k (n− 1) + 2N max

k∈N

{
µk∥xT

k|Ŝk,n
(n)∥ℓ2

} N∑
k=1

|eo,k(n)|

(3)

∗The full proof is omitted due to space limitations.
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(a) 10 nodes, m = 100 & SR 10%
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(b) 10 nodes, m = 100 & SR 5%
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(c) Tracking performance

Fig. 1. Average MSD Performance of the proposed algorithm at various scenarios

where ϵ(n) := ∥w(n)−w∗∥ℓ2 ,w(n) = [wT
1 (n), . . . ,w

T
N (n)]T ∈

RNm, w∗ = [wT
∗ , . . . ,w

T
∗ ]

T ∈ RNm and ϵ
(2)
k (n) := ∥wk(n) −

w∗∥ℓ2 . Furthermore, eo,k(n) is the estimation error of the optimum
Wiener filter, δ3s,k(λ, n) is the 3sth order exponentially–weighted
restricted isometry constant of the measurement matrix [16], λk is
the maximum eigenvalue of the input covariance matrix Rk and the
step–size µk.

Let us now discuss the intuitions gained from Thm. 2. The
first and third term on the right hand side of Eq. (3) reminds us
the error bound of the Adapt–Combine LMS [2]. The second term
is analogous to the error bound of the Hard Thresholding Pursuit
algorithm, [20], restricted on the complementary of the estimated
support (corresponding to a batch of data of size n), mainly because
we are using an exponentially weighted average proxy variant of
[20]. In a way, the second term remedies the pay–off of not having
found completely the true support set after n iterations.

5. COMPUTER SIMULATIONS

In this section, we present computer simulations, in order to com-
pare the performance of the proposed algorithm, with the sparsity
promoting diffusion LMS–based scheme of [8] (SpaDLMS). The
performance metric is the average Mean Square Deviation, which
equals to MSD(n) = 1/N

∑N
k=1 ∥wk(n) − w∗∥2 and the curves

occur from 30 Monte Carlo (MC) runs, in order to reduce the real-
ization dependency. At each MC run, a new sparsity pattern is gener-
ated and the non–zero elements of the parameterw∗ for that run are
draws from a multivariate Gaussian distributionw∗|S ∼ N (0, I).

In the first experiment, we consider a diffusion network con-
sisted of N = 10 nodes and the unknown vector has dimension
equal to m = 100, with 10 non–zero coefficients (10% sparsity ratio
(s/m)). The input is drawn from a Gaussian distribution, with mean
value equal to zero and variance equal to 1, whereas the the variance
of the noise equals to σ2

k = 0.01ηk ∀k ∈ N , where ηk ∈ [0.5, 1] is
randomly chosen with respect to the uniform distribution. The com-
bination coefficients are chosen with respect to the Metropolis rule
[17]. In this experiment, it is assumed that both algorithms are op-
timized in the sense that the regularization parameter used in [8] is
chosen according to the optimum rule presented in this study, which
needs knowledge of the ℓ1–norm of the unknown vector, whereas in
the proposed algorithm we assume that we know the number of non–
zero coefficients. Finally, the step–sizes are chosen so that the algo-
rithms exhibit a similar convergence speed, and the forgetting factor
λ equals to 1. From Fig. 1.a, it can be seen that the proposed algo-
rithm outperforms SpaDLMS significantly, since it converges faster
to a lower steady state error floor, at a similar convergence speed.

In the second experiment, the parameters remain the same as
in the previous one, but we alter the sparsity level of the unknown
vector. More specifically, we assume that the sparsity ratio drops
to 5%. Fig. 1.b illustrates that the enhanced performance of the
proposed scheme is still retained in this paradigm.

Finally, in the third experiment, we examine the tracking be-
haviour of the proposed scheme, i.e., the performance of the pro-
posed algorithm in time–varying environments, and the sensitivity in
the case where our parameters are not optimized. In order to achieve
these two goals, the following scenario is considered. We assume
that at the first 1450 iterations the parameters are the same as in the
first experiment, with the exception of the forgetting factor which
now equals to λ = 0.95. At the next time instant the channel under-
goes a sudden change. Specifically, two non–zero coefficients of the
initial unknown vector, are nullified, but the parameters remain the
same in both algorithms, hence they are no more “optimal”. From
Fig. 1.c, it can be readily seen that the proposed algorithm enjoys a
good tracking speed, since after the sudden change in the unknown
parameter, it reaches at steady state, faster than the SpaDLMS.

6. CONCLUSION

In this paper, a novel sparsity–promoting adaptive algorithm for dis-
tributed learning was proposed. The algorithm follows the principles
of greedy algorithms. An analytical bound for the error is established
and the algorithm is proved to converge in the mean sense. Numer-
ical examples validate the enhanced performance of the developed
scheme compared to an other recently proposed algorithm. Future
research is focused on batch and blind distributed algorithms suit-
able for sparsity–aware learning.
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