
THRESHOLD BEHAVIOR OF EPIDEMICS IN REGULAR NETWORKS

June Zhang and José M.F. Moura
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ABSTRACT

Current research is interested in identifying how topology impacts
epidemics in networks. In this paper, we model SIS (susceptible-
infected-susceptible) epidemics as a continuous-time Markov pro-
cess and for which we can obtain a closed form description of the
equilibrium distribution. Such distribution describes the long-run
behavior of the epidemics. The adjacency matrix of the network
topology is reflected explicitly in the formulation of the equilibrium
distribution. Secondly, we are interested in analyzing the model in
the regime where the topology dependent infection process opposes
the topology independent healing process. Specifically, how will
network topology affect the most probable long-run network state?
We show that for k-regular graph topologies, the most probable net-
work state transitions from the state where everyone is healthy to one
where everyone is infected at a threshold that depends on k but not
on the size of the graph.

Index Terms— reversible Markov process, regular networks,
equilibrium distribution, SIS epidemics, limiting distribution

1. INTRODUCTION

We are interested in analyzing diffusion processes in a multi-agent
system where agents’ states are affected by their local neighborhood.
We will motivate our problem by studying the spread of epidemics
throughout a population. Such a process can also be used to study
the spread of information, the spread of failures, etc. Traditional
epidemics modeling assumes a homogenous population where each
agent interacts with every other agent in the population. Such an
approach uses mean-field approximations to analyze the diffusion
process for a very large population ([1], [2]).

More recently, in conjunction with growing interest in network
science, researchers have been interested in understanding how the
topology of the interconnections in a population might affect the dif-
fusion process. Usually, the diffusion process of interest is the SIS
(susceptible-infected-susceptible) epidemics [1]. In such a process,
an infected node may heal then be reinfected again. Many previ-
ous works focused on analyzing how epidemics will spread amongst
specific graph topologies such as Erdős-Rényi networks, scale-free
networks, etc [3].

In 2003, [4] introduced a general SIS epidemics model for arbi-
trary network topologies by modeling the diffusion process as a dis-
crete time linear dynamic system; the state of the system is a vector
whose elements correspond to a single agent in the population and
whose values represents the probability that the agent is infected.
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They found that the dynamics of the epidemics is dependent on the
largest eigenvalue of the adjacency matrix that describes the topol-
ogy of the network.

Alternatively, [5] modeled the SIS epidemics using a continuous-
time Markov process where the state of the system is a binary-valued
vector where each entry denotes the current state of an agent (i.e., 1
for infected, 0 for uninfected). Their results showed that the mean
epidemics lifetime is related to the spectral radius of the adjacency
matrix.

Both models assume that the only way an agent may become
infected is through contamination from an infected neighbor. We ac-
count for possible infection sources external to the population (i.e.,
exogenous infection sources). Therefore, the epidemics is not erad-
icated if all the agents are healthy as an agent may spontaneously
become infected.

Instead of the mean epidemics lifetime, we are interested in the
long-run behavior of the epidemics process. For example, what is
the probability that agent 1 and agent 2 will be infected while the
rest of the population is healthy. What is the most likely network
state in the long-run?

In section 2, we describe our continuous-time Markov process
model in detail and provide the closed form equation of the limit-
ing distribution for arbitrary network topologies. This result relates
to works done by [6] but our formulation makes explicit how net-
work topology affects the equilibrium distribution. In section 3, we
focus on analyzing the most probable network configuration (i.e.,
the network state with the maximum equilibrium probability) for
the regime where the topology dependent infection process opposes
the topology independent healing process. We find that for regular
networks, the critical point where the most probable network state
exhibit threshold behavior is solely dependent on the degree of the
network.

2. THE MODEL

2.1. Network of Agents

Consider a population ofN agents whose relationship is represented
by an unweighted, undirected, connected graph, G(V,E), where V
is the set of vertices and E is the set of edges. The topology of G is
captured by the symmetric, N × N adjacency matrix, A. The state
of the ith agent is denoted by ni. Each agent can be in one of two
possible states: healthy (ni = 0) or infected (ni = 1).

We assume that the network topology, G, remains static over
time. Define n as the N -tuple collection of all the node states.

n = [n0, n1, . . . , nN−1]
T
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We will refer to n as the network state in this paper. Define N =
{n}, | N |= 2N .

2.2. Continuous-Time Markov Chain SIS Model

Let X(t) = n be the state of the network at time t, t ≥ 0. The
evolution ofX(t) models a SIS epidemics on the network consisting
of 2 types of events:

1. Healing. Infected agents are healed in a length of time that is
exponentially distributed with rate µ > 0. The healed agent
is susceptible to reinfection. The parameter µ is considered
to be network topology independent as we assume that µ is
the same for all agents.

2. Infection. We separate the infection process into two types:
exogenous and endogenous infection.

(a) Exogenous Infection. An uninfected node may spon-
taneously develop infection in a length of time that is
exponentially distributed with rate λ > 0. We assume
that λ is the same for all the agents; the parameter is
network topology independent.

(b) Endogenous Infection. An uninfected node becomes in-
fected by transmission from infected neighbors (assum-
ing that all infected individuals are equally contagious).
The parameter γ > 0 is the endogenous infection rate
due to a single infected neighbor. We assume that γ is
independent of λ. However, since the overall endoge-
nous infection rate is dependent on the total number of
infected neighbors, it is different for different agents
and is therefore network topology dependent.

Under these conditions, we model X(t) as a finite state,
continuous-time Markov chain with state spaceN = {n}.

Adapting the notation from [7], we define 2 operators on a state
of the Markov process, n = [n0, n1, . . . nj , . . . , nk, . . . , nN−1]

T

Hkn = [n0, n1, . . . , nk = 1, . . . , nN−1]
T

Hj•n = [n0, n1, . . . , nj = 0, . . . , nN−1]
T

The operatorHk defines the operation that node k becomes infected.
If node k is already infected, the operator does nothing. The operator
Hj• defines the operation that node j is healed. If node j is already
uninfected, the operator does nothing.

There are two types of state transitions in the Markov process
corresponding to healing and infection events respectively:

1) X(t) jumps to the network state where the jth node (j =
0, . . . , N − 1) is healed with transition rate:

q(n, Hj•n) = µ, n 6= Hj•n (1)

Borrowing terminology from the field of system reliability, the time,
T , it takes for the jth node to heal is referred to as the downtime.
The average downtime for agent j is

E[Tj ] =
1

µ
(2)

2) X(t) jumps to the network state where the kth node (k =
0, 1, . . . , N − 1) is infected with transition rate

q(n, Hkn) = λγdk (3)

where dk =
∑N−1
j=0 1(nj = 1)Ajk, is the number of infected neigh-

bors of node k. The symbol 1(·) is the indicator function, and

A = [Ajk] is the adjacency matrix of G. We will refer to the time,
T̂ , it takes for the kth node to become infected as the uptime. The
average uptime for agent k is

E[T̂k] =
1

λγdk
(4)

When dk = 0, we will refer to E[T̂k] = 1
λ

as the topology
independent uptime.

In previous SIS Markov models ([8, 5]), the rate of infection
is addition (i.e., λ + γdk). In this model, the rate of infection is
multiplicative.

2.3. Rate Matrix, Q

Using the rates defined in (1) and (3), we can generate the rate or
infinitesimal matrix, Q. The infinitesimal matrix is an asymmetric
2N × 2N matrix. Qi,j corresponds to the the transition rate between
2 network states i, j ∈ N where i and j are the decimal scalar rep-
resentation of i and j respectively.

SinceX(t) is an irreducible, finite-state continuous-time Markov
process, the equilibrium distribution, π, always exists and is the
unique equilibrium distribution. Furthermore, π is also the limiting
distribution of the process [7].

π(n) = lim
t→∞

P (X(t) = n), n ∈ N

The equilibrium distribution can be found by solving πQ = 0.
However, this is computational infeasible for networks with large
number of agents. We have shown previously for a similar SIS
model that symmetries in network topologies decrease computation
requirement [8].

2.4. Reversibility and Equilibrium Distribution

Some continuous-time Markov process possess the property that the
stochastic behavior of the process forward in time is the same as the
behavior of the process reversed in time. These Markov processes
are called reversible processes. There exists a simple necessary and
sufficient condition relating the equilibrium distribution and the re-
versibility condition:

Theorem 2.1 (From [7]). A stationary Markov process is reversible
if and only if there exists a collection of positive number π(j), j ∈ L,
summing to unity that satisfy the detailed balance conditions

π(j)q(j, k) = π(k)q(k, j), j, k,∈ L

When there exists such a collection π(j), j ∈ L, it is the equilibrium
distribution of the process.

Using the detailed balance conditions, the equilibrium distribu-
tion may be ‘guessed’.

Theorem 2.2 (Proof in Appendix A). X(t) is a reversible Markov
process and the equilibrium distribution is

π(n) =
1

Z

(
λ

µ

)1Tn

γ
nT An

2 , n ∈ N (5)

where Z is the normalization constant and is defined as

Z =
∑
n∈N

(
λ

µ

)1Tn

γ
nT An

2 (6)
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The equilibrium distribution is the product on two terms: a
topology independent term and a topology dependent term. The
topology independent term consists of the topology independent
model parameters λ

µ
and 1Tn, the number of infected nodes in the

network state n. The topology dependent term explicitly accounts
for the network topology in the form of the adjacency matrix, A.
It consists of the topology dependent parameter γ and nTAn

2
, the

number of edges where both end nodes are infected in network state
n. Note that 0 ≤ 1Tn ≤ N and 0 ≤ nTAn

2
≤ E, where N is the

total number of nodes in the network and E is the total number of
edges.

3. MOST PROBABLE LONG-RUN NETWORK STATE, n∗

We can analyze the long-run behavior of the SIS epidemics by solv-
ing for the entire equilibrium distribution using Theorem 2.2. How-
ever, the normalization constant,Z, may be cumbersome to calculate
for large networks.

Instead of looking at the full equilibrium distribution, we focus
our attention on the most probable network state, n∗, where

n∗ = argmax
n∈N

π(n) = argmax
n∈N

(
λ

µ

)1Tn

γ
nT An

2 (7)

We will show that n∗ exhibits a threshold behavior on the mod-
eling parameters

(
λ
µ
, γ
)

. In particular, we can show how the topol-
ogy of k-regular graph network will affect n∗ when the model pa-
rameters are in the following regime: 0 < λ

µ
≤ 1, γ > 1.

With 0 < λ
µ
≤ 1, the topology independent healing process

dominates the topology independent infection process. Without the
diffusion process, the agents are more likely to be healthy than in-
fected. However, since γ > 1, additional infected agents will exert
an adverse effect on health of the population. What role does net-
work topology play in this tug-of-war between the topology inde-
pendent process and the topology dependent process?

3.1. K-Regular graph

In a k-regular network, each node has k neighbors. Partition the state
space,N

N = N0 ∪N1 ∪ . . .NN
where Ns = {n ∈ N | 1Tn = s} is the set of network states with
s infected agents and ns ∈ Ns. Note that N0 = {n0} andNN =
{nN}.

Lemma 3.1 (Proof in Appendix B). When 0 ≤ λ
µ
≤ 1, γ > 1

and for s = 0, 1, . . . , N,ns ∈ Ns, the unnormalized equilibrium
distribution is upperbounded by an exponential function:

π(ns) ∝
(
λ

µ

)s
γ

nsT Ans

2 ≤
(
λ

µ
γ

k
2

)s
(8)

Furthermore, the relationship holds with equality for n0 and nN .

Theorem 3.1. When 0 ≤ λ
µ
≤ 1, γ > 1, a threshold exists for the

most probable network configuration

1. λ
µ
γ

k
2 > 1 if and only if n∗ is unique and n∗ = nN =

[1, 1, . . . 1]T

2. λ
µ
γ

k
2 < 1 if and only if n∗ is unique and n∗ = n0 =

[0, 0, . . . 0]T

3. λ
µ
γ

k
2 = 1 if and only if n∗ is no longer the unique maxi-

mizer. n∗ = nN , n∗ = n0

Proof. For sufficiency in case 1 of Theorem 3.1: if λ
µ
γk/2 > 1, then

n∗ is unique and n∗ = nN .
When λ

µ
γk/2 > 1, the RHS of (8) is maximized when s = N .

Since this is a growing exponential function, it is also the unique
maximizer. By Lemma 3.1, n∗ = nN .

Proof. For necessity in case 1 of Theorem 3.1: if n∗ is unique and
n∗ = nN , then λ

µ
γk/2 > 1

Since n∗ = nN , it follows from Lemma 3.1 that the bounding
exponential function reaches a maximum at s = N . By the mono-
tonicity property, we know that this is satisfied only when λ

µ
γk/2 >

1.

Proof. For sufficiency in case 2 of Theorem 3.1: If λ
µ
γk/2 < 1, then

n∗ is unique and n∗ = n0.
When λ

µ
γk/2 < 1, the RHS of (8) is maximized when s = 0.

Since this is a decaying exponential function, it is also the unique
maximizer. By Lemma 3.1, n∗ = n0.

Proof. For necessity in case 2 of Theorem 3.1: If n∗ is unique and
n∗ = n0, then λ

µ
γk/2 < 1.

Since n∗ = n0, it follows from Lemma 3.1 that the bounding
exponential function reaches a maximum at s = 0. By the mono-
tonicity property, we know that this is satisfied only when λ

µ
γk/2 <

1.

Proof. For sufficiency in case 3 of Theorem 3.1: If λ
µ
γ

k
2 = 1 then

n∗ is no longer the unique maximizer. n∗ = nN , n∗ = n0.
When λ

µ
γk/2 = 1, the RHS of (8) is 1 regardless of s. We know

that this is satisfied with equality for n0 and nN . Therefore, n∗ is
no longer the unique and n∗ = nN , n∗ = n0

Proof. For necessity in case 3 of Theorem 3.1: If n∗ is no longer
the unique maximizer and n∗ = nN , n∗ = n0, then λ

µ
γk/2 = 1.

When λ
µ
γk/2 = 1, the RHS of (8) is the same for s = 0 and

s = N when λ
µ
γk/2 = 1. By Lemma 3.1, n∗ = nN , n∗ = n0 is

also satisfied.

4. CONCLUSION

By modifying the transition rates so that the diffusion effect is multi-
plicative rather than linear, the continuous-time Markov process that
describes the SIS epidemics becomes a reversible process. A closed
form expression for the equilibrium distribution, up to a constant
multiplier, is obtained for arbitrary network topology; the equilib-
rium distribution is separable into a topology independent term and
a topology independent term.

Network topology plays an important role when the topology
independent process opposes the topology dependent process (e.g.,
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topology dependent process tends toward cascading infection but in-
dividual nodes tend to heal faster than they become infected). For
a k-regular network, we prove that relationship between the model
parameters and the degree of the network defines a critical threshold
for the most probable network state; the size of the network however,
is not a contributing factor.

The threshold defines where the most probable network state
transitions from the configuration where everyone is healthy to the
configuration where everyone is infected. At the threshold, the be-
havior is unpredictable. Our results show that networks with high
degree will have a lower threshold than a network with low degree.
This matches our intuition that a network with higher degree is more
well connected; therefore it is easier for the topology dependent pro-
cess to dominate the topology independent process.
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A. PROOF OF THEOREM 2.2

Proof. Using Theorem 2.1. We will now prove that Equation (5) sat-
isfies the detailed balance condition and is therefore the equilibrium
distribution.

π(n)q(n, Hkn) = π(Hkn)q(Hkn,n), ∀n ∈ N (9)

and

π(n)q(n, Hj•n) = π(Hj•n)q(Hj•n,n), ∀n ∈ N (10)

The total number of infected nodes in the entire network is
1Tn = n. The number of infected neighbors of node k is

dk =

N−1∑
j=0

1(nj = 1)Ajk (11)

In state Hkn, we gain 1 additional infected node: 1THkn =
n + 1. Furthermore, we gain as many additional balanced infected
edges as the number of infected neighbor of node k:

(Hkn)
TA(Hkn)

2
=

nTAn

2
+ dk

In state Hj•n, we loose an infected node: 1THj•n = n −
1. Furthermore, we loose as many balanced infected edges as the
number of infected neighbors of node j:

(Hj•n)
TA(Hj•n)

2
=

nTAn

2
− dj

Using the transition rates defined by (1), (3) and the proposed
form of the equilibrium distribution π(n) in (5), the detailed balance
equations are satisfied.

1

Z

(
λ

µ

)n
γ

nT An
2 λγdk =

1

Z

(
λ

µ

)n+1

γ
nT An

2
+dk (µ) (12)

and

1

Z

(
λ

µ

)n
γ

nT An
2 (µ) =

1

Z

(
λ

µ

)n−1

γ
nT An

2
−djλγdj (13)

B. PROOF OF LEMMA 3.1

We want to show that for a k-regular graph and 0 ≤ λ
µ
≤ 1, γ > 1,

where s is the number of infected nodes in the graph

(
λ

µ

)s
γ

nsT Ans

2 ≤
(
λ

µ
γ

k
2

)s
, s = 0, 1, . . . , N,ns ∈ Ns

Furthermore, the relationship holds with equality for n0 and nN .

Proof. Note that for the k-regular graph

Ans =


∑N
i=1A1in

s
i∑N

i=1A2in
s
i

...∑N
i=1ANin

s
i

 ≤

k
k
...
k

 , if k ≤ s

and

Ans =


∑N
i=1A1in

s
i∑N

i=1A2in
s
i

...∑N
i=1ANin

s
i

 ≤

s
s
...
s

 , if k ≥ s

nsTAns ≤ sk, if k ≤ s (14)

nsTAns ≤ s2 ≤ sk, if k ≥ s (15)

With γ > 1, we know that(
λ

µ

)s
γ

nsT Ans

2 ≤
(
λ

µ

)s
γ

sk
2 , ∀s = 0, 1, . . . , N

When s = 0, equality is clearly satisfied. When s = N , all the
nodes in the graph are infected. Then the number of edges whose
end nodes are infected is kN

2
. Hence the equality is also satisfied.
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