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ABSTRACT
We study the distributed inference task over regression and classifi-
cation models where the likelihood function is strongly log-concave.
We show that diffusion strategies allow the KL divergence between
two likelihood functions to converge to zero at the rate 1/Ni on av-
erage and with high probability, where N is the number of nodes in
the network and i is the number of iterations. We derive asymptotic
expressions for the expected regularized KL divergence and show
that the diffusion strategy can outperform both non-cooperative and
conventional centralized strategies, since diffusion implementations
can weigh a node’s contribution in proportion to its noise level.

Index Terms— distributed regression, distributed classification,
diffusion adaptation, Kullback-Leibler divergence, relative entropy.

1. INTRODUCTION AND RELATED WORK

In machine learning, many problems of interest can be cast as func-
tion fitting problems where the function is parameterized by some
parameter vector, wo [1–6]. For example, Gaussian density esti-
mation problems require the learning of the probability distribution
of the incoming data with the probability distribution parameterized
by a mean vector and a non-singular covariance matrix. In regres-
sion problems, a function form is chosen and the best parameters are
sought that fit the input variables to a target variable. In classification
problems, the dependent variable is a class label (±1 in the case of
binary classification or detection) and therefore discrete.

A common method for learning the parameter vectorwo is maxi-
mum likelihood estimation (MLE). In this framework, the likelihood
function of the dependent variable given the independent variables
is determined and then maximized over w. In order to assess the
performance of whichever algorithm is used to carry out the maxi-
mization, a deviation measure between the optimal parameter, wo,
and the estimated parameter, w, must be chosen. One useful way to
measure performance is to evaluate the “distance” between the max-
imum attainable likelihood (attained when the optimal parameterwo

is used) and the likelihood attained by using some other parameter,
w. The Kullback-Leibler (KL) divergence (or relative conditional
entropy) [7, pp. 22–23] can be used for this purpose since it measures
the discrepancy between two probability distributions, such as likeli-
hood functions. Under some reasonable conditions on the likelihood
function (such as strong log-concavity), it is possible to show that
traditional non-cooperative stochastic gradient algorithms allow the
KL divergence to asymptotically converge to zero at the rate Θ(1/i),
where i is the number of iterations (or observed instances of the inde-
pendent and dependent variable pairs). This means that of the order
of Θ(1/ε) samples are needed in order to achieve a KL divergence
of the order Θ(ε) on average.
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In this work, we focus on the distributed learning problem where
different nodes in an ad-hoc network wish to estimate wo from their
observed data without explicitly communicating the raw data. This
constraint may be due to privacy concerns or communication con-
cerns. We propose a distributed diffusion strategy that is able to
learn the desired parameter asymptotically and we derive an asymp-
totic expression for the evolution of the KL divergence measure un-
der some reasonable assumptions on the likelihood function. Among
other results, we show that the distributed algorithm allows the nodes
to achieve a KL divergence of the order of Θ(ε) with only Θ(1/Nε)
samples on average, as opposed to the Θ(1/ε) required for the non-
cooperative scheme. We further show that the diffusion strategy’s
rate of convergence matches the rate of the centralized solution (see
(19)), and even surpasses the centralized algorithm’s performance
when the noise variance varies across the nodes. We note that we are
including the factor of N inside the big-Theta notation because we
are interested in studying how the convergence rate depends on the
number of nodes in the network; similar notation is used in [8, 9].
In a similar manner to our earlier work in [6, 10], we will derive an
asymptotic expression for this rate later in the manuscript—see (20).

We may mention that the results of [11] show that the combine-
then-adapt (CTA) diffusion strategy of [12–14] converges almost
surely when the noise variances are uniform across the nodes. Sim-
ilarly, it is shown in [10] under the same assumptions made in
this paper that sufficient conditions for almost sure convergence of
the adapt-then-combine (ATC) diffusion strategy of [6, 12, 13] is
that the step-size sequence be not absolutely summable but square-
summable. A similar result appears in [15]. This implies that the
step-size sequence of the form µ(i) , µ/i, which we will utilize in
this work, guarantees almost sure convergence. However, the analy-
sis in [11] does not examine the convergence rate of the algorithms,
which is relevant in the current context. Also, the work in [15] fo-
cuses on the case where the combination matrix is doubly-stochastic
(or doubly-stochastic in the mean), which is, as we will see later,
only optimal in the case where all nodes experience similar noise
power [6, 10]. We consider the case in which the noise variances
vary across the nodes and explain how the cooperation strategy
can be optimized in order to achieve (and exceed) the performance
of [11, 15] and the centralized solution.
Notation. Throughout the manuscript, random quantities are de-
noted in boldface. Matrices are denoted with capital letters while
vectors and scalars are represented with small-case letters.

2. PROBLEM FORMULATION AND ASSUMPTIONS

We study the distributed regression/classification problem, which is
commonly encountered in generalized linear models and in inference
problems over graphical models. We consider a connected network
with N nodes numbered k = 1, . . . , N . Each node k observes suc-
cessive realizations of data {hk,i,yk,i} over time. The data depend
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on some unknown parameter vector, wo (e.g., the distribution of the
data depends on wo). The variable hk,i is assumed to be temporally
white and independent over space; it is also assumed to be indepen-
dent of all other variables. The quantity yk,i depends on hk,i.

The objective of the network is to determine the parameter vec-
tor wo from the observed variables {hk,i,yk,i, i ≥ 0}Nk=1 across all
nodes. In principle, each node k can pursue this task on its own and
employ the maximum likelihood estimator to determine wo. When
the likelihood function, p(yk,i|hk,i;w), is log-concave, the maxi-
mization of the likelihood function is not demanding since this task
can be solved by computationally inexpensive iterative algorithms
such as gradient ascent. When the data samples arrive in real-time
and not available for batch processing, as commonly occurs in real
life networks such as peer-to-peer or social networks, stochastic gra-
dient ascent algorithms provide a computationally efficient solution
to maximize the expected log-likelihood function over the distribu-
tion of the data. We will see that stochastic algorithms seek to di-
rectly minimize the Kullback-Leibler divergence.

The Kullback-Leibler (KL) divergence, a common metric used
in this context, measures the “distance” between two likelihood dis-
tributions [7, pp. 22–23]:

DKL
(
p(yk,i|hk,i;w

o) ‖ p(yk,i|hk,i;w)
)
,

EDk

{
log

(
p(yk,i|hk,i;wo)
p(yk,i|hk,i;w)

)}
(1)

where p(yk,i|hk,i;wo) indicates the maximum attainable likelihood
over the parameter space while p(yk,i|hk,i;w) indicates the like-
lihood attained using the parameter set w. Moreover, Dk repre-
sents the distribution of the data {hk,i,yk,i}. The KL divergence
is a measure of the dissimilarity between two probability distribu-
tions [4, p. 277]. While the KL divergence is not a true distance met-
ric, since it is non-symmetric and does not satisfy the sub-additivity
property, it is nevertheless non-negative and satisfies D(p ‖ q) = 0
if, and only if, p = q. The last property implies that demonstrating
that the KL divergence between two likelihood functions converges
to zero ensures that the two likelihood functions converge to each
other almost everywhere. It is possible to rearrange the terms in (1)
to observe that minimizing the KL divergence at node k over w is
equivalent to minimizing the following cost function:

Jk(w) , EDk{Q(w,hk,i,yk,i)} (2)

where

Q(w,hk,i,yk,i) , − log(p(yk,i|hk,i;w)) (3)

We observe that when the likelihood function p(yk,i|hk,i;w) is log-
concave, then the local cost function Jk(w) is convex. Since data are
being collected at N nodes spread over a network, then a reasonable
objective would be to minimize the aggregate KL divergence over
the network, or equivalently,

Jglob(w) ,
N∑
k=1

Jk(w) (4)

Actually, minimizing the global cost in (4) amounts to minimizing
the KL divergence of the joint distribution p({yk,i}|{hk,i};w) over
the network. This objective matches what we wish to achieve in
a fully distributed manner. There are at least two classes of fully
distributed strategies that can be used to minimize global costs of
the form (4): consensus strategies [16, 17] and diffusion strategies
[12–14, 18]. Diffusion strategies are particularly attractive because

they enable information to diffuse more thoroughly through net-
works and endow networks with adaptation and learning abilities.
They have also been shown to outperform consensus strategies in
terms of mean-square-error performance and convergence rate [19].
For these reasons, we continue our discussions by studying diffu-
sion solutions for (4). Following arguments from [13], the following
diffusion implementation can be motivated for the distributed mini-
mization of (4).

Algorithm 1 (Diffusion strategy)
Each node k begins with an estimate wk,0.
Let {a`k} denote nonnegative coefficients that satisfy:

N∑
`=1

a`k=1, akk > 0, a`k=0 if nodes ` and k are disconnected (5)

for i = 1, 2, . . . do

ψk,i = wk,i−1 − µ(i)∇̂wJk(wk,i−1) [Adaptation] (6)

wk,i =
N∑
`=1

a`kψ`,i [Aggregation] (7)

end for
where ∇̂wJk(·) is an instantaneous approximation for the true gradient
vector∇wJk(·), and µ(i) > 0 is a step-size sequence.

In Alg. 1, each node performs two steps sequentially at each iter-
ation i: first, the node uses (6) to move against a stochastic gradient
of the cost function and, second, the node combines its updated esti-
mate with that of its neighbors according to (7). The gradient vector
in (6) is generally based on an instantaneous approximation for the
true gradient using the current observed data {xk,i, yk,i}, such as:

∇̂wJk(w) = ∇wQ(w, xk,i, yk,i) (8)

where Q(·, ·, ·) is defined in (3). For our subsequent analysis, we
introduce the following reasonable assumption on ∇̂wJk(w) [13].

Assumption 1. We model the perturbed gradient vector as:

∇̂wJk(w) = ∇wJk(w) + vk,i(w) (9)

where, conditioned on the past history of the estimators Hi−1 ,
{wk,j : k = 1, . . . , N and j ≤ i− 1}, the gradient noise vk,i(w)
satisfies:

E{vk,i(w)|Hi−1} = 0 (10)

E{‖vk,i(w)‖2|Hi−1} ≤ αE‖wo −w‖2 + σ2
v (11)

for some α ≥ 0, σ2
v ≥ 0, and where w ∈ Hi−1. �

Due to the random nature of vk,i(·), the estimates wk,i will
be random and we will therefore use the boldface notation to refer
to them. It is further assumed that the gradient noise vk,i(w) is
uncorrelated across the nodes, i.e.,

E{vT
k,i(wk,i)v`,i(w`,i)} = 0, ∀ k 6= `,∀ i (12)

We also introduce the (steady-state) noise covariance matrix when
the noise is evaluated at wo:

Rv,k , E{vk,i(wo)vT
k,i(w

o)}, i→∞ (13)

In linear regression, for example, the dependent variable satisfies
yk,i ∼ N (hT

k,iw
o, σ2

k) and, therefore, different nodes will experi-
ence different amounts of noise during their learning task (see Ex-
ample 2 in [13]). On the other hand, consider the example of logistic
regression, a standard classification method.
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Example 1 (Logistic regression). In logistic regression, the depen-
dent variable yk,i is binary, i.e., it assumes values from the set
{+1,−1}, while the independent variable hk,i ∈ RM×1. The log-
odds is assumed to obey a linear model [4, p. 117]:

log

(
p(yk,i|hk,i;w)

1− p(yk,i|hk,i;w)

)
= yk,ih

T
k,iw (14)

Solving for p(yk,i|hk,i;w), we have that the likelihood is given by

p(yk,i|hk,i;w) =
1

1 + e
−yk,ih

T
k,i
w

and the loss function Q(w,hk,i,yk,i) in (3) is found to be

Q(w,hk,i,yk,i) = log
(

1 + e−yk,ih
T
k,iw

)
(15)

�
In both cases (linear and logistic regression), all nodes will share

the same optimizer of their cost functions, which is the case of inter-
est in this exposition. In logistic regression, all nodes share the same
cost function J(w) but the gradient oracle that provides ∇̂kJ(w)
may offer different quality estimates to different nodes. In this case,
we will see that cooperation will help nodes overcome this hetero-
geneity and will cause the quality of the estimate of all nodes to
improve in comparison to naı̈ve centralized processing (see (19) and
Fig. 2 further ahead). In order to facilitate the analysis, we introduce
the following assumption regarding the functions Jk(w).

Assumption 2. The risk function Jk(w) is twice continuously dif-
ferentiable and the Hessian matrix of Jk(w) is uniformly bounded:

λminI ≤ ∇2
wJk(w) ≤ λmaxI (16)

where 0 < λmin ≤ λmax <∞. �

Specifically, Assumption 2 states that the cost function Jk(w)
is strongly convex with a bounded Hessian (the eigenvalues of
∇2
wJk(w) are no less than λmin and no greater than λmax). We can

easily transform logistic regression presented in Example 1 to be
strongly convex by adding a regularization term of the form ρ

2
‖w‖22

to the negative log-likelihood function [20, 21], or equivalently, to
minimize the regularized KL divergence:

DRKL
(
p(yk,i|hk,i;w

o) ‖ p(yk,i|hk,i;w)
)
,

ρ

2

(
‖w‖22 − ‖wo‖22

)
+ EDk

{
log

(
p(yk,i|hk,i;wo)
p(yk,i|hk,i;w)

)}
(17)

We will compare the performance of the diffusion strategy in
Alg. 1 with that of the following non-cooperative algorithm:

wk,i = wk,i−1 − µ(i)∇̂wJk(wk,i−1) [non-cooperative] (18)

It can be shown that the non-cooperative algorithm (18) allows the
KL divergence to converge to zero at the rate Θ(1/i) [22–24]. On
the other hand, when the nodes are allowed to transmit their data to a
central node at every iteration, the following full gradient algorithm
may be executed at the central node:

wi = wi−1 −
µ(i)

N

N∑
k=1

∇̂wJk(wi−1) [centralized] (19)

It is possible to show that the centralized algorithm (19) can converge
at the rate Θ(1/Ni) [6,10,25]. This conclusion suggests that there is
anN -fold improvement that can be attained by cooperation. In order
to show similar results for the distributed algorithm listed in Alg. 1,
we require the following assumption on the network topology.

Assumption 3 (Connected network). There exists a path from every
node to every other node in the network. �
This assumption, together with (5), guarantees that the matrix A is
primitive [18]. In the next section, we study the convergence rate (to
zero) of the regularized KL divergence defined in (17) when the dif-
fusion strategy is employed, and show that the diffusion strategy can
achieve the performance of the centralized solution (19) and even
surpass it when the N × N combination matrix A = [a`k] is cho-
sen properly. We note that condition (5) ensures that A is a left-
stochastic matrix, i.e., AT1 = 1, where 1 is the all-ones vector.

3. ASYMPTOTIC BEHAVIOR OF THE KL DIVERGENCE
In this section, we present our main result. We let the diffusion
strategy (6)–(7) utilize a step-size sequence of the form µ(i) , µ/i
where the initial step-size µ is positive. Using Assumptions 1-2, we
can now establish the following result.

Theorem 1 (Asymptotic behavior of KL divergence). The regular-
ized expected KL divergence obeys

Ewk,i−1{DRKL
(
p(yk,i|hk,i;w

o) ‖ p(yk,i|hk,i;wk,i−1)
)
}

∼ 1

2
pTLip+ Θ(i−2λminµ) (20)

as i→∞, where Li is an N ×N diagonal matrix with

{Li}k,k =

M∑
m=1

λmµ
2αm(i)(ΦTRv,kΦ)mm (21)

and αm(i) is defined as

αm(i),


i−1

2λmµ−1
, 2λmµ > 1

log(i)
i
, 2λmµ = 1

3F2(1,1,1;2−λmµ,2−λmµ;1)

Γ(2−λmµ)2
· i−2λmµ, 2λmµ < 1

(22)

where Γ(·) and 3F2(a1, a2, a3; b1, b2; z) are the Gamma and gen-
eralized hypergeometric functions [26, pp. 892,1010], respectively,
p is the right eigenvector of the combination matrix A associated
with eigenvalue 1; and is normalized so that 1Tp = 1, ∇2J(wo)
has the eigenvalue decomposition ∇2J(wo) = ΦΛΦT where Λ =
diag{λ1, . . . , λM} is positive-definite and Φ orthogonal, and Rv,k
is defined in (13). Moreover, λmin is defined as the smallest eigen-
value of∇2J(wo): λmin , min{λ1, . . . , λM}.

Proof. Omitted due to space limitation. �

In Theorem 1, the notation f(i) = Θ(g(i)) means that there
exists a pair of constants c1, c2 and positive integer j such that
c1g(i) ≤ f(i) ≤ c2g(i) for i ≥ j; in other words, f(i) asymptoti-
cally decays/grows at the same rate as g(i) (up to a constant). The
key point that we wish to convey from Theorem 1 is that the fastest
rate of convergence is achieved when 2λminµ > 1. The asymptotic
regularized KL divergence then becomes (2i)−1pTLp, where L is
the diagonal N ×N matrix with entries

{L}k,k =

M∑
m=1

λmµ
2

2λmµ− 1
(ΦTRv,kΦ)mm (23)

The convergence rate’s dependence onN is still encoded in the right-
eigenvector p of the combination matrixA. In order to optimize over
p, we notice that the following optimization problem is convex:

min
p

pTLp

subject to: pk > 0, 1
Tp = 1
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where the {pk} denote the individual entries of p. The solution is:

po =
L−11

1TL−11
(24)

It is straightforward to verify that 1Tpo = 1 and that since the diago-
nal elements of L−1 are positive, then po > 0. To examine the effec-
tiveness of this choice for p, consider the case where 2λminµ � 1,
in which case the matrix L becomes

L ≈ µ

2
diag{Tr(Rv,1), . . . ,Tr(Rv,N )} [2λminµ� 1] (25)

so (17) is asymptotically approximated by (on average),

Ewk,i−1{DRKL
(
p(yk,i|hk,i;w

o) ‖ p(yk,i|hk,i;wk,i−1)
)
}

≈ µ

4i
· 1∑N

k=1 Tr(Rv,k)−1
, [2λminµ� 1] (26)

Since the harmonic mean is bounded by the arithmetic mean, we
have:

µ

4i
· 1∑N

k=1 Tr(Rv,k)−1
≤ µ

4i
· 1

N2

N∑
k=1

Tr(Rv,k) (27)

and the inequality is strict when the noise variances are not uniform
across the nodes. Actually, it can be shown using Assumption 1 that
the right-hand-side of (27) is the performance attained by the cen-
tralized algorithm (19). This implies that the diffusion algorithm will
asymptotically achieve the same performance as (19) when the noise
variances across the nodes are the same. In addition, when the noise
variances are not uniform, then the diffusion algorithm actually has
better performance than (19). This is unsurprising since (19) weighs
the gradients from the nodes uniformly. The centralized algorithm
can be made to achieve better performance if it is modified to weigh
the gradients of the different nodes according to their noise level.

The only remaining task is to construct a combination matrix A
in a distributed manner, so that it satisfies Apo = po. This can be
accomplished by using the Hastings weights [25, 27] to generate a
left-stochastic combination matrix A:

a`k =


1
po
k

min
(
po`
|N`|

,
pok
|Nk|

)
, ` ∈ Nk, ` 6= k

1−
∑
j∈Nk\{k}

ajk, ` = k

0, otherwise

(28)

where pok indicates the k-th element of the vector po and Nk indi-
cates the neighborhood of node k including the node itself: Nk =
{` : a`k 6= 0}. Notice that the weights (28) can be computed in
a decentralized manner using only information available from each
node’s neighborhood. It is finally possible to utilize Markov’s in-
equality [28, p. 151] to transform the result from Theorem 1 to a
high probability statement regarding the KL divergence itself, not
just its expectation. That is, with probability at least 1− δ, we have
DRKL

(
p(yk,i|hk,i;wo) ‖ p(yk,i|hk,i;wk,i−1)

)
≤ µ2

2δ
pTLip.

4. SIMULATION
In order to illustrate our results, we simulate the learning ability of
a distributed network of classifiers based on Example 1. We gen-
erate an adhoc network of N = 8 nodes where each node sam-
ples M = 2 dimensional feature vectors from a Gaussian mix-
ture with two components and probability density function hk,i ∼
1
2
N (21, IM ) + 1

2
N (−21, IM ), where N (γ,Σ) denotes the multi-

variate Gaussian density function with mean vector γ and covariance
matrix Σ. The labels yk,i are generated according to (15) where
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Fig. 1. Plot of noise variances across the 8 nodes in the simulation.
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Fig. 2. Regularized KL divergence attained by nodes that utilize the non-
cooperative algorithm (18), centralized algorithm (19), and diffusion algo-
rithm (6)-(7). Theoretical curves are from (26)-(27). Curves are averaged
over 100 experiments.

w is chosen arbitrary. Each node performs the diffusion algorithm
listed in Alg. 1 by computing the gradient according to the instan-
taneous approximation of the strongly-convex regularized KL diver-
gence (17) with added Gaussian random noise. The noise profile
across the nodes is illustrated in Fig. 1. Notice that two nodes (nodes
1 and 8) are experiencing a large amount of noise in comparison to
the other nodes in the network—this is to illustrate the advantage
over naı̈ve averaging of the gradients that is performed in (19). The
combination weights for the diffusion algorithm are chosen accord-
ing to the Hastings rule (28) and the po is found by (24) where L
is approximated by (25). The regularization constant ρ is chosen to
be 5 in the simulation since it will determine λmin and in order to
ensure that our approximation in (26) is valid, we choose µ to be 10.
The optimizer is found by optimizing the sum of the regularized KL
divergences and using empirical average for the expectation.

Figure 2 shows the resulting curves. We plot the performance
of the non-cooperative algorithm along with its theoretical perfor-
mance (both averaged over the nodes). In addition, we show the per-
formance of the centralized algorithm (19) along with its theoretical
performance obtained from the right-hand-side of (27). We see that
the diffusion algorithm outperforms the non-cooperative algorithm
and the centralized algorithm listed in (19). We further observe that
the two nodes with the large noise variance begin with a higher reg-
ularized KL divergence but the diffusion of information throughout
the network allows them to converge at the same rate as the other
nodes in the network (and still faster than the rate that the nodes
with low noise variance achieved by themselves). Had the diffusion
algorithm utilized doubly-stochastic weights such as in [6, 11], its
performance would only asymptotically match that of the central-
ized algorithm (19) and the right-hand-side of (27).

We conclude that the use of the optimized weights determined
by (28), (24), and (25) yields an improvement in convergence rate
over naı̈ve averaging and that the diffusion strategy will asymptot-
ically allow all nodes in the adhoc network to converge at this fast
rate strictly through local interactions.
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