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ABSTRACT

In this work, we propose adaptive link selection strategies for
distributed estimation in diffusion-type wireless networks. We
develop an exhaustive search-based link selection algorithm and
a sparsity-inspired link selection algorithm that can exploit the
topology of networks with poor-quality links. In the exhaustive
search-based algorithm, we choose the set of neighbors that results
in the smallest mean square error (MSE) for a specific node. In the
sparsity-inspired link selection algorithm, a convex regularization
is introduced to devise a sparsity-inspired link selection algorithm.
The proposed algorithms have the ability to equip diffusion-type
wireless networks and to significantly improve their performance.
Simulation results illustrate that the proposed algorithms have lower
MSE values, a better convergence rate and significantly improve the
network performance when compared with existing methods.

Index Terms— Adaptive link selection, diffusion networks,
wireless sensor networks, distributed processing.

1. INTRODUCTION

Distributed strategies have become very popular for parameter es-
timation in wireless networks and applications such as sensor net-
works and smart grids [1, 2, 3, 4]. In this context, for each specif-
ic node a set of neighbor nodes collect their local information and
transmit the estimates to a specific node. Several works in the litera-
ture have proposed strategies for distributed processing: incremental
[1], diffusion [2], sparsity-aware [3] and consensus-based strategies
[4]. With diffusion strategies [2], the neighbors for each node are
fixed and the combined coefficients are pre-calculated after the net-
work is generated. This approach may not provide an optimized es-
timation performance for each specified node because there are links
that are more severely affected by noise or fading. Moreover, when
the number of neighbor nodes is large, each node requires a large
network bandwidth and transmit power. A key problem with the s-
trategies reported so far in the literature is that they do not exploit
the topology of wireless networks and the knowledge about the poor
links to improve the performance of estimation algorithms.

In order to optimize the performance of distributed estimation
techniques in wireless networks and minimize the mean-square error
(MSE) associated with the estimates, we propose two adaptive link
selection algorithms. The proposed techniques exploit the knowl-
edge about the poor links and the topology of the network to select
a subset of links that results in an improved estimation performance.
The first approach consists of an exhaustive search-based link selec-
tion (ESLS) algorithm, whereas the second technique is based on a
sparsity–inspired link selection (SILS) algorithm. For the ESLS al-
gorithm, we consider all possible combinations for each node with
its neighbors and choose the combination associated with the small-
est MSE value. For the SILS algorithm, we incorporate a reweighted

zero attraction (RZA) strategy into the adaptive link selection algo-
rithm. The RZA approach is usually employed in applications deal-
ing with sparse systems in such a way that it shrinks the small values
in the parameter vector to zero, which results in better convergence
rate and steady-state performance. Unlike prior work with sparsity-
aware algorithms [3, 5, 6, 7], the proposed SILS algorithm exploits
the possible sparsity of the MSE associated with each of the links
in a different way. Unlike existing methods that shrink the signal
samples to zero, SILS shrinks to zero the links that have a poor per-
formance. We introduce a convex penalty, i.e., an ℓ1–norm term to
adjust the combined coefficients for each node with its neighbors in
order to select the neighbor nodes that yield the smallest MSE val-
ues. For a specified node, we calculate the MSE at all its neighbor
nodes including the specified node itself through the previous esti-
mate. For the node with the maximum MSE, we impose a penalty
and give a reward to the node with the smallest MSE. The proposed
SILS algorithm performs this process automatically. By using the
SILS algorithm some nodes with unsatisfactory performance will be
eliminated and some poor nodes will be taken into account when
their performance improves, which means the network topology will
change automatically as well. Simulation results for an application
to distributed estimation illustrate that the proposed ESLS and SIL-
S algorithms have better convergence rates and lower MSE values
when compared with the existing diffusion least-mean square (LM-
S) strategies in [2].

This paper is organized as follows. Section 2 describes the dis-
tributed processing in the networks and the problem statement. In
section 3, the proposed link selection algorithms are introduced. The
numerical simulation results are provide in section 4. Finally, we
conclude the paper in section 5.

Notation: We use boldface upper case letters to denote matrices
and boldface lower case letters to denote vectors. We use (·)T and
(·)−1 denote the transpose and inverse operators respectively, and
(·)∗ for conjugate transposition.

2. DISTRIBUTED PROCESSING IN WIRELESS
NETWORKS AND PROBLEM STATEMENT

We consider a diffusion–type wireless network with N nodes which
have limited processing capabilities. At every time instant i, each
node k takes a scalar measurement d(i)k according to

d
(i)
k = ω∗

0x
(i)
k + n

(i)
k , i = 1, 2, . . . , N, (1)

where x(i)
k is the M × 1 input signal vector, n(i)

k is the noise sample
at each node with zero mean and variance σ2

n,k. Through (1), we can
see that the measurements for all nodes are related to an unknown
vector ω0. Fig.1 shows an example for a diffusion–type wireless
network with 20 nodes. The aim for a diffusion–type network is
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to compute an estimate of ω0 in a distributed fashion, which can
minimize the cost function

Jω(ω) = E|d(i)k − ω∗x
(i)
k |2, (2)

where E denotes the expectation operator. To solve this problem, one
possible basic diffusion technique is the adapt–then–combine (ATC)
diffusion strategy [2] ψ

(i)
k = ω

(i−1)
k + µkx

(i)
k [d

(i)
k − ω(i−1)∗

k x
(i)
k ]∗,

ω
(i)
k =

∑
l∈Nk

cklψ
(i)
l , (3)

where ckl is the combination coefficient, which is calculated under
the Metropolis rules

ckl =
1

max(nk,nl)
, if k ̸= l are linked

ckl = 0, for k and l not linked
ckk = 1−

∑
l∈Nk/k

ckl, for k = l

(4)
and should satisfy ∑

l

ckl = 1, l ∈ Nk∀k. (5)

Another combination rule named Hastings rule, which has been re-
ported recently in the literature [8], could also be employed here to
calculate the combination coefficients. For this kind of strategy, the
choice of the neighbors for each node is fixed, this situation will
cause a problem when some of the neighbor nodes have a poor per-
formance, and there is no chance for the node to discard the poorly
performing neighbors instead of continue to use their information. In
order to solve this problem and optimize the distributed processing,
we need to provide each node with the ability to select its links.
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Fig. 1. Network topology with 20 nodes

3. PROPOSED ADAPTIVE LINK SELECTION
ALGORITHMS

In order to optimize the distributed processing and improve the per-
formance of the network, we propose the ESLS and the SILS algo-
rithms. These two algorithmic strategies give the nodes the ability to
choose their neighbors based on their MSE performance.

3.1. Exhaustive search-based link selection (ESLS)

The ESLS employs an exhaustive search to select the links that yield
the best performance in terms of MSE. For our proposed ESLS al-
gorithm, we employ the adaptation strategy given by

ψ
(i)
k = ω

(i−1)
k + µkx

(i)
k [d

(i)
k − ω(i−1)∗

k x
(i)
k ]∗

Table 1. The ESLS Algorithm
Initialize: ω(−1)

k =0
For each time instant i=1,2, . . . , n
For each node k=1,2, . . . , N

ψ
(i)
k = ω

(i−1)
k + µkx

(i)
k [d

(i)
k − ω(i−1)∗

k x
(i)
k ]∗

end
For each node k=1,2, . . . , N

find all possible sets of Ωs
e
(i)
Ωs

= d
(i)
k − x(i)

k

∗ ∑
l∈Ωs

cklψ
(i)
l

Ω̂s = argmin
Ωs

e
(i)
Ωs

ω
(i)
k =

∑
l∈Ω̂s

cklψ
(i)
l

end
end

and redefine the diffusion step.
First, we introduce a tentative set Ωs using a combinatorial ap-

proach described by

Ωs , CjM , j = 1, 2, . . . ,M, (6)

where {M} is the total number of nodes linked to node k including
node k itself. This combinatorial strategy will cover all combination
choices for each node k with its neighbors.

After the tentative set Ωs is defined, we redefine the cost func-
tion as

Jψ(ψ) , E|d(i)k − x(i)
k

∗
ψ|2, (7)

where
ψ ,

∑
l∈Ωs

cklψ
(i)
l , (8)

and the error pattern is introduced as

e
(i)
Ωs

, d
(i)
k − x(i)

k

∗ ∑
l∈Ωs

cklψ
(i)
l . (9)

For each node k, the strategy that finds the best set Ωs should solve
the following optimization

Ω̂s = argmin
Ωs

Jψ(ψ), (10)

which is equivalent to minimizing the error e(i)Ωs
. After all steps have

been completed, the diffusion step in (3) can be modified as

ω
(i)
k =

∑
l∈Ω̂s

cklψ
(i)
l . (11)

At this point, the main steps of the ESLS algorithm have been com-
pleted. The proposed ESLS algorithm finds the set Ω̂s that min-
imizes the cost function in (7) and then uses this set of nodes to
obtain ω(i)

k through (11). The ESLS algorithm is summarized in Ta-
ble 1. When the ESLS is implemented in networks with small and
low-power sensors, the cost may become expensive, as the algorithm
in (6) requires an exhaustive search and needs more communication
resources to examine all the possible sets Ωs.
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3.2. Sparsity-inspired link selection (SILS)

The ESLS algorithm outlined above needs to examine all possible
sets to find a solution, which might result in an unacceptable com-
putational complexity for large networks operating in time-varying
scenarios. To solve the combinatorial problem with a low complex-
ity, we propose the SILS algorithm which is as simple as a standard
diffusion LMS algorithm and is suitable for adaptive implementa-
tions and scenarios where the parameters to be estimated are slowly
time-varying.

Value

Nodes

Sparsity Aware

Algorithm

Value

Nodes
a ) Sparsity Aware Algorithm

Value

Nodes

SILS

Algorithm

Value

Nodes
b ) SILS Algorithm

Fig. 2. Sparsity aware signal processing strategies

Fig. 2 shows the difference between the existing sparsity-aware
methods and the proposed sparsity-inspired strategy. In Fig. 2 (a),
we can see that, after being processed by a sparsity-aware algorithm,
the nodes with small error values will be shrunk to zero. In contrast,
the sparsity-inspired algorithm will shrink the nodes with large error
values to zero as illustrated in Fig. 2 (b).

In the proposed SILS algorithm, we introduce the convex penal-
ty term ℓ1–norm into the diffusion step in (3) to perform the link s-
election. Different penalty terms have been considered for this task.
We have adopted the reweighted zero–attracting strategy [3] into the
diffusion step in (3) because this strategy has shown an excellent
performance and is simple to implement.

First, we consider the following regularization function

f1(e
(i)
l )) =

∑
l∈Nk

log(1 + ε|e(i)l |), (12)

where the error pattern e
(i)
l is defined as

e
(i)
l , d

(i)
k − x(i)

k

∗
ψ

(i)
l (l ∈ Nk) (13)

and ε is the shrinkage magnitude. Then, the diffusion step in (3) can
be transformed into the link selection method as

ω
(i)
k =

∑
l∈Nk

[ckl − ρ
∂f1
∂el

(e
(i)
l )]ψ

(i)
l , (14)

where ρ is used to control the shrinkage intensity of the algorithm
and it is updated by using

∂f1(e
(i)
l )

∂el
= ε

sign(e
(i)
l )

1 + ε|ξmin|
. (15)

In (15), the parameter ξmin stands for the minimum value of e(i)l in
each group of nodes including each node k and its neighbors. The
function sign(x) is defined as

sign(x) =

{
x/|x| x ̸= 0
0 x = 0.

(16)

To further simplify the expression in (14), we introduce the vector
and matrix quantities required to describe the adaptation process. We
first define a vector c that contains the combination coefficients for
each group of nodes including node k and its neighbors as described
by

c , [c(k,l)]l∈Nk . (17)

Then, we introduce a matrix Ψ that includes all the estimated vectors
which are generated after the adaptation step in (3) for each group as
given by

Ψ , [ψ
(i)
l ]l∈Nk . (18)

An error vector e that contains all the error values calculated through
(13) for each group is expressed by

e , [e
(i)
l ]l∈Nk . (19)

To employ the sparsity–inspired approach, we have modified the
vector e in the following way. The maximum value e

(i)
l in e will

be set to |e(i)l |, while the minimum value e
(i)
l will be set to −|e(i)l |.

For the remaining entries, they will be set to zero. Finally, by insert-
ing (15)-(19) into (14), the diffusion step will be changed to

ω
(i)
k =

Nk∑
j=1

[cj − ρ
∂f1
∂ej

(ej)]Ψj

=

Nk∑
j=1

[cj − ρε
sign(ej)

1 + ε|ξmin|
]Ψj .

(20)

The proposed SILS algorithm performs link selection by the adjust-
ment of the combination coefficients through c in (20). For the
neighbor node with the largest MSE value, after our modifications
for e, its e(i)l value in e will be a positive number which will lead to
the term ρε

sign(ej)

1+ε|ξmin|
in (20) being positive too. This means that the

combining coefficient for this node will be reduced and the weight
for this node to build the ω(i)

k is reduced too. In contrast, for the
neighbor node with the minimum MSE, as its e

(i)
l value in e will

be a negative number, the term ρε
sign(ej)

1+ε|ξmin|
in (20) will be negative

too. As a result, the weight for this node associated with the mini-
mum MSE to build theω(i)

k is increased. For the remaining neighbor
nodes, the e(i)l value in e is zero, which means the term ρε

sign(ej)

1+ε|ξmin|
in (20) is zero and there is no change for their weights to build the
ω

(i)
k . The process for the combination coefficients in (5) is still sat-

isfied. The SILS algorithm is summarized in Table 2.
For the ESLS and SILS algorithms, we redesign the diffusion

step and employ the same adaptation procedure, which means these
two algorithms have the ability to equip any diffusion–type wire-
less networks operating with other than the LMS algorithm. This
includes the diffusion RLS strategy [9] and the diffusion conjugate
gradient strategy [10].

4. SIMULATION RESULTS

In this section, we compare our proposed diffusion link selection
algorithms, ESLS and SILS, with the traditional diffusion ATC al-
gorithm [2] based on the performance of MSE. With the network
topology structure in Fig. 1, we introduce N=20 nodes in this sys-
tem. The length for the unknown parameter ω0 is M=10 and it
is generated randomly. The input signal is generated as x(i)

k =

[x
(i)
k x

(i−1)
k ... x

(i−M+1)
k ] and x

(i)
k = u

(i)
k +αkx

(i−1)
k , where αk
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Table 2. The SILS Algorithm
Initialize: ω(−1)

k =0
For each time instant i=1,2, . . . , n
For each node k=1,2, . . . , N

ψ
(i)
k = ω

(i−1)
k + µkx

(i)
k [d

(i)
k − ω(i−1)∗

k x
(i)
k ]∗

end
For each node k=1,2, . . . , N

e
(i)
l = d

(i)
k − x(i)

k

∗
ψ

(i)
l (l ∈ Nk)

c = [c(k,l)]l∈Nk

Ψ = [ψ
(i)
l ]l∈Nk

e = [e
(i)
l ]l∈Nk

Find the maximum and minimum terms in e
Modified e as e=[0· · ·0,|e(i)l |︸︷︷︸

max

,0· · ·0,−|e(i)l |︸ ︷︷ ︸
min

,0· · ·0]

ξmin = min(e
(i)
l )

ω
(i)
k =

Nk∑
j=1

[cj − ρε
sign(ej)

1+ε|ξmin|
]Ψj

end
end

is a correlation coefficient and u
(i)
k is a white noise process with vari-

ance σ2
u,k = 1 − |αk|2, to ensure the variance of x(i)

k is σ2
x,k = 1.

The noise samples are modeled as complex Gaussian noise with vari-
ance of σ2

n,k = 0.001. The step size for all these four algorithms is
µ = 0.045. For the static scenario, the sparsity parameters of the
SILS algorithm are set to ρ = 4 ∗ 10−3 and ε = 10. The results
are averaged over 100 independent runs. From Fig. 3, we can see
that ESLS has the best performance for both the MSE and the con-
vergence rate, and obtains a 5 dB gain over the traditional diffusion
ATC algorithm. SILS is a bit worse than the ESLS, but is still sig-
nificantly better than the standard diffusion ATC algorithm by about
4 dB. For the complexity and processing time, SILS is as simple as
the standard diffusion ATC algorithm, while ESLS is more complex.
For the time–varying scenario, the sparsity parameters of the SILS
algorithm are set to ρ = 6 ∗ 10−3 and ε = 10. The unknown vector
ω0 is defined by the first–order Markov vector process

ω
(i+1)
0 = aω

(i)
0 + z(i), (21)

where z(i) is an independent zero–mean Gaussian vector process
with variance σ2

z = 0.01 and a = 0.98. Fig. 4 shows that, for the
time–varying scenario, ESLS still performs best, while SILS has the
second best performance.

Fig. 3. Network MSE curves in a static scenario

Fig. 4. Network MSE curves in a time–varying scenario

5. CONCLUSION

In this paper, two adaptive link selection strategies have been pro-
posed for distributed estimation in diffusion–type wireless networks.
The ESLS algorithm uses an exhaustive search to perform the link
selection, and SILS employs a sparsity-inspired approach with the
ℓ1–norm penalization. Numerical results have shown that the two
proposed algorithms achieve a better convergence rate and lower
MSE values than the algorithms in [2]. These results hold also when
employing other algorithms including RLS and CG techniques. The
ESLS and SILS algorithms can be used in any kind of diffusion–type
wireless networks and can also be applied to problems of statistical
inference in smart grids.
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