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ABSTRACT

This paper is motivated by the problem of integrating multiple
sources of measurements. We consider two multiple-input-
multiple-output (MIMO) channels, a primary channel and a
secondary channel, with dependent input signals. The pri-
mary channel carries the signal of interest, and the secondary
channel carries a signal that shares a joint distribution with the
primary signal. The problem of particular interest is design-
ing the secondary channel matrix, when the primary channel
matrix is fixed. We formulate the problem as an optimiza-
tion problem, in which the optimal secondary channel matrix
maximizes an information-based criterion. An analytical so-
lution is provided in a special case. Then an intrinsic search
algorithm is proposed to approximate the optimal solutions in
general cases. In particular, the intrinsic algorithm exploits
the geometry of the unit sphere, a manifold embedded in Eu-
clidean space.

Index Terms— Embedded submanifold, information
fusion, MIMO channel design, mutual information, two-
channel system.

1. INTRODUCTION

Consider the following two-channel system,

x = Fθ + u
y = Gφ+ v.

(1)

The first channel is the primary channel that carries the signal
of interest θ. The secondary channel carries a signal φ that
shares a joint distribution with θ. The measurements x and y
are linear transformations of the input signals with measure-
ment noises u and v, respectively. For example, the elements
of the signal of interest θ might be the complex scattering co-
efficients of several radar-scattering targets and the elements
of the secondary signal φ might be intensities in an optical
map of these same optical-scattering targets. The measure-
ment x is then a range-doppler map and the measurement y
is an optical image. We assume a known signal model, i.e.,
the joint distribution of θ and φ. When the signals θ and φ
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are correlated, the measurements x and y both contain infor-
mation about θ and we can integrate them to estimate θ. The
fused estimate is expected to perform better than the estimate
from a single source of measurements. In this paper, our ob-
jective is to design the channel matrix G, with the primary
channel fixed, such that the fused estimate achieves the best
performance.

For a one-channel system x = Fθ + u, designing the
channel matrix F exhibits parallels to the linear precoding
design problem for multiple-input-multiple-output (MIMO)
communications systems by considering F as the precoder
into an identity channel matrix. The linear precoding de-
sign for MIMO channels has been studied in the literature
[1]-[9]. The optimal precoding is designed under various
criteria, for example, signal-to-noise ratio (SNR) and signal-
to-interference-noise ratio (SINR), [1],[2]. Another criterion
that has drawn more attention recently is the mutual infor-
mation between input signal and output, [3],[4],[6]. This
information-based criterion is connected with estimation the-
ory in a Gaussian channel with arbitrary input distribution
by linking the mutual information with the minimum mean
square error [10],[11]. In [3], an optimal precoding matrix
for the MIMO Gaussian channel with arbitrary inputs is ex-
pressed as the solution of a fixed point equation. When the
input signal is Gaussian distributed, the one-channel design
problem can be solved as a singular value decomposition
(SVD) problem. The optimal channel matrix has an SVD
with the singular vectors allocated to create non-interfering
subchannels and the singular values chosen to solve a water-
filling problem, [4],[6],[16].

If both θ and φ are of interest, the two-channel system is
in fact a one-channel system with a block-diagonal channel
matrix. Our two-channel model differs from the previously
studied models because of the presence of the “nuisance” sig-
nal φ. Moreover, our two-channel system design problem is
fundamentally more difficult than the one-channel system de-
sign. In this paper, we fix the primary channel and design
the secondary channel matrix G that maximizes the informa-
tion gain by adding the secondary channel, subject to the total
power constraint tr(GGT ) ≤ 1. We call this a one-channel
design problem in a two-channel system. In general, this is
not a convex problem. Moreover, this problem cannot be for-
mulated as an SVD problem, in contrast to the one-channel
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system design. Here, we propose an intrinsic gradient algo-
rithm that exploits the geometry of the total power constraint.
The unit sphere, an embedded submanifold of Rn, has a well-
studied geometry [13],[14].

The rest of the paper is organized as follows. We formu-
late the design problem in Section 2 and point out the chal-
lenges for the design in the two-channel system. An optimal
design for the multiple-input-single-output (MISO) model is
given in Section 3. In Section 4, we propose the intrinsic gra-
dient search which exploits the geometry of the unit sphere to
approximate the optimal channel matrix. Section 5 is a nu-
merical example, and Section 6 concludes the paper.

Notation: The set of length m real vectors is denoted by
Rm and the set ofm×n real matrices is denoted Rm×n. Bold
upper case letters denote matrices, boldface lower case letters
denote column vectors, and italics denote scalars. The scalar
xi denotes the ith element of vector x, and Xi,j denotes the
element of X at row i and column j. The n × n identity
matrix is denoted by In. The transpose, inverse, trace and
determinant of a matrix are denoted by (·)T , (·)−1, tr(·) and
det(·), respectively.

A covariance matrix is denoted by bold upper caseQwith
specified subscripts: Qzz denotes the covariance matrix of a
random vector z; Qz1z2 is the cross-covariance matrix be-
tween z1 and z2; Qz1z1|z2 is the conditional covariance ma-
trix of z1 given z2.

2. OVERVIEW

2.1. Problem Formulation

In the two-channel system (1), the signal of interest is θ.
When θ and φ are correlated, both channels carry informa-
tion about θ. Thus, in general, fusing measurements x and
y will yield a better estimate of θ than using measurement
x only. The information gain by including measurement y
is I(x,y;θ) − I(x;θ), where I(x,y;θ) is the information
about θ carried by both channels and I(x;θ) is the informa-
tion about θ carried by the first channel.

In this paper, we consider maximization of the informa-
tion gain over the second channel matrix G, while the first
channel matrix F is fixed. Thus the information gain is a
function of G. Denote the function by D(G). Under the
Gaussian distribution assumption, the information gain is

D(G) =
1

2
log detQθθ|x −

1

2
log detQθθ|x,y (2)

whereQθθ|x andQθθ|x,y are the conditional covariance ma-
trices for θ given x and x,y, respectively. The function
D(G) is bounded and nonnegative. In fact, one can show
that D(G) ≤ I(x,φ;θ) − I(x;θ), which means the addi-
tional information gain the noisy measurement y can bring is
no greater than that brought by φ. We further notice that, for
anyG, D(λG) is monotone increasing for λ ≥ 0. Therefore,

without any constraint, maximization of the information gain
will lead to a trivial solution by letting the norm of G go to
infinity. Here we maximize the information gain subject to a
total power constraint; that is, tr(GGT ) ≤ 1, or equivalently
‖G‖ ≤ 1 where ‖ · ‖ is Frobenius norm.

The design problem we consider here is a one-channel de-
sign problem in a two-channel system. In a one-channel sys-
tem, the optimal channel matrix that maximizes the mutual
information between input and output under the total power
constraint can be expressed explicitly. In fact, the optimal
channel matrix has a singular value decomposition (SVD) in
which its singular values are solutions of a water-filling prob-
lem [16] and its singular vectors are allocated to create non-
interacting channels, see [4],[6],[15]. In our two-channel sys-
tem, searching for the optimal secondary channel matrix is
more complicated. In general, the optimization problem can-
not be reformulated as a standard SVD problem. The diffi-
culty arises due to the non-degenerate joint distribution of θ
andφ. In fact, when the conditional covariance matrixQφφ|θ
is zero, i.e., the value of φ is fixed given θ, the optimal chan-
nel matrix G can be solved from an SVD problem, as in the
one-channel system.

As a summary, the problem of interest is:

(I) maximize
G∈Rt×q

D(G) s.t. tr(GGT ) ≤ 1.

2.2. An Insightful Discussion of the Information Gain

To motivate our discussion, we decompose the secondary
channel as follows:

y =(GME[θ|x]) + (GM(θ − E[θ|x]))
+ (G(φ− E[φ|θ]) + v) ,

where M = QφθQ
−1
θθ . The secondary channel y is de-

composed into three independent components, as illustrated
in Fig. 1. The first component GME[θ|x] is completely de-
termined by the first channel x and does not contribute to
the information gain brought by y. The second component
GM(θ − E[θ|x]), denoted by ω, is independent of x and it
carries the extra information in channel y about θ. The third
componentG(φ−E[φ|θ])+v, denoted by ν, is independent
of both x and θ, and it can be viewed as noise.

y

GME[θ|x]

G(ϕ-E[ϕ|θ])+v

GM(θ-E[θ|x])

Fig. 1. Decomposition of the secondary channel y.
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With the covariance matrices of ω and ν, the information
gain D(G) can be re-written as

D(G) =
1

2
log det[I +Q−1/2νν QωωQ

−1/2
νν ]. (3)

By viewingω as a signal and ν as a noise,Q−1/2νν QωωQ
−1/2
νν

is a generalized signal-to-noise ratio matrix. Maximizing (3)
balances the tradeoff between the noise covariance and the
signal covariance. As illustrated in Fig. 1, a good channel de-
sign will favor a long parallelepiped with short height. For a
MISO channel, maximizing the information gain is simplified
to maximizing a scalar signal-to-noise ratio, as will be shown
in Section 3. For the multiple-output channel, this is funda-
mentally more difficult than maximizing the signal-to-noise
ratio in the single output case. The difficulty arises because
the channel matrixG shapes bothQωω andQνν .

3. SINGLE-OUTPUT SOLUTION

Suppose that the second channel has a single output. Then
Qvv = σ2

v ∈ R1. The channel matrix G is a row vector, and
we denoteG = gT for some vector g ∈ Rq . The information
gain is

D(g) =
1

2
log

(
1 +

gTMQθθ|xM
Tg

gTQφφ|θg + σ2
v

)
. (4)

Notice that log(1 + x) is strictly increasing for x ∈ (0,∞).
Therefore, solving problem (I) is equivalent to maximizing
the generalized Rayleigh quotient

gTMQθθ|xM
Tg

gTQφφ|θg + σ2
v

(5)

subject to ‖g‖ ≤ 1. Note that (5) is exactly σ2
ω/σ

2
ν , with ω

and ν the signal and noise defined in Section 2.2. This means
a good channel matrix will maximize the ratio of signal power
σ2
ω to noise power σ2

ν . It is easy to see that the maximum is
attained when ‖g‖ = 1. Therefore write σ2

v as σ2
v = σ2

vg
Tg.

Let g̃ = (σ2
vIq +Qφφ|θ)

1/2g, we rewrite the Rayleigh quo-
tient as

gTMQθθ|xM
Tg

gTQφφ|θg + σ2
v

=
g̃TAg̃

g̃T g̃
≤ λmax(A)

where A = (σ2
vIq + Qφφ|θ)

−1/2MQθθ|xM
T (σ2

vIq +

Qφφ|θ)
−1/2. The maximum is attained at g∗ = α(σ2

vIq +

Qφφ|θ)
−1/2vmax(A), with α a scalar such that ‖g∗‖ = 1.

The corresponding maximum information gain is

D(g∗) =
1

2
log (1 + λmax(A)) .

4. GEOMETRICALLY INSPIRED ALGORITHM

Now we consider the general problem (I). It can be seen that
the maximum information gain is obtained at the boundary
tr(GGT ) = 1. In fact, for any G such that tr(GGT ) < 1,
G̃ = 1

‖G‖G yields a larger information gain than G, which
is a direct consequence of the fact that D(λG) is monotone
increasing for λ ≥ 0. In this section, we propose an intrin-
sic gradient search algorithm to approximate the maximum of
D(G). We consider G as a point on the unit sphere Stq−1,
which is a submanifold of Rtq , and the intrinsic gradient is
computed by taking the geometry of the manifold Stq−1 into
consideration.

Let g be the vectorization of matrix G, denoted by g =
vec(G), i.e.,

g = [G1,1, . . . ,Gt,1,G1,2, . . . ,Gt,2, . . . ,G1,q, . . . ,Gt,q]
T .

In fact, the vectorization operation is a one-to-one and onto
mapping from Rt×q to Rtq; that is, for any g ∈ Rtq , there
exists a unique matrix G ∈ Rt×q such that vec(G) = g.
Therefore without ambiguity we may rewrite D(G) as D(g)
which is a mapping from the vector space Rtq to R. The gra-
dient of D in Rtq is

∇gD = vec(∇GD) (6)

where∇GD is the gradient of the function D w.r.t. G.
Recall that the solution of the constrained optimization

problem (I) satisfies tr(GGT ) = 1. Thus, we only need to
consider the unit sphere Stq−1 = {g ∈ Rtq :

∑tq
i=1 g

2
i = 1}.

Let Ds be the restriction of D to the unit sphere Stq−1. That
is, for any g ∈ Stq−1, DS(g) = D(g). The optimization
problem (I) can be expressed as

maximizeDS(g), s.t. g ∈ Stq−1.

In general, to solve an optimization problem on a manifold,
an intrinsic gradient search should enforce the manifold ge-
ometry. In our application, the geometry of Stq−1 is enforced
by the unit norm constraint. For the vector space Rtq , its tan-
gent space TxRtq is a linear space of dimension tq spanned
by ∂

∂x1
, . . . , ∂

∂xtq
. For any ξx ∈ TxRtq , there exists a unique

vector ξ ∈ Rtq such that ξx =
∑tq
i=1 ξi

∂
∂xi

. Therefore, we
can identify TxRtq by Rtq . The unit sphere Stq−1 is an em-
bedded submanifold of Rtq , and its tangent space TgStq−1 is
a subspace of TgRtq . In particular, for any ξg ∈ TgS

tq−1,
there exists a unique vector ξ ∈ Rtq such that gT ξ = 0 and
ξg =

∑tq
i=1 ξi

∂
∂gi

. Therefore, the tangent space TgStq−1 can
be identified by

TgS
tq−1 = {ξ ∈ Rtq : gT ξ = 0}.

The orthogonal projection of any h ∈ Rtq onto the tangent
space is

PTgStq−1h = (Itq − ggT )h.
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Since Stq−1 is a submanifold embedded in Rtq , the gradient
of DS on Stq−1 is the projection of the Euclidean gradient
∇gD to the tangent space TgStq−1, i.e.,

ηg , grad(DS)g = PTgStq−1(∇gD)

where ∇gD is given in (6). Note that here the inner product
on the tangent space TgStq−1 is 〈ξ1, ξ2〉g = ξT1 ξ2. A graph-
ical illustration of the relationship between ∇gD and ηg is
given in Fig. 2.

∇gD

ηg

TgS

g

Rg(ηg)

Fig. 2. Projection of the Euclidean gradient to the tangent
plane of unit sphere.

Next, we consider a mapping from the tangent space
TgS

tq−1 to the manifold Stq−1, which is defined as

Rg(ξ) = g cos(‖ξ‖) +
ξ

‖ξ‖
sin(‖ξ‖) (7)

for any tangent vector ξ ∈ TgS
tq−1. For t ≥ 0, γ(t) :=

Rg(tξ) is a curve on the manifold Stq−1 starting from g. This
curve generalizes the notion of moving on the manifold Stq−1

along the direction ξ. In fact, Rg given in (7) is the exponen-
tial map in Riemannian geometry and the resulting curve γ(t)
generalizes the idea of straight line in Euclidean space. When
maximizing the information gain DS(g) over the manifold
Stq−1, the intrinsic gradient search algorithm updates gk+1

as
gk+1 = Rgk(τkηgk)

where ηgk is the intrinsic gradient ofDS at gk and τk is a step
size.

The following algorithm encodes the intrinsic gradient
search which approximates a maximizer of DS on the mani-
fold Stq−1.

Algorithm: Intrinsic Gradient Search
Input: Initial g0 ∈ Stq−1
Output: Sequence of iterates {gk}.
for k = 0, 1, 2, . . . do
Select gk+1 = Rgk(τkηk) where ηk = grad(DS)gk and
τk = argmaxτ DS(Rgk(τηk)).
end for

The step size τk can be chosen on the interval [0, 2π/‖ηk‖)
since Rg(τηk) is a periodic function of τ with period

2π/‖ηk‖. By the choice of τk, the information gain is non-
decreasing, i.e., DS(gk+1) ≥ DS(gk) for each k.

It is worth noting that the proposed algorithm works for
other optimization criteria. For example, if our goal is to find
a channel matrix that minimizes trace or determinant of the
conditional covariance matrix Qθθ|x,y , we only need to re-
place the gradient correspondingly.

5. SIMULATION

In this section, we give a simple simulation study to demon-
strate the performance of the proposed intrinsic search algo-
rithm. We use the intrinsic algorithm to approximate the op-
timal MISO secondary channel and compare it with the true
optimal solution in Section 3. The results suggest that the
intrinsic algorithm converges to the global optimal solution.
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Fig. 3. A numerical study for a MISO secondary channel.

6. CONCLUSIONS

In this paper, we have studied the problem of fusing multiple
sources of information. We considered a two-channel system
where one of the input signals is of interest and the other is
a secondary signal that is jointly distributed with the signal
of interest. The objective is to design the secondary chan-
nel, with the primary channel fixed. Through an orthogonal
decomposition of the secondary channel, we get insight into
the problem and find that maximizing the information gain
actually maximizes the determinant of a signal-to-noise-ratio
matrix. We design the secondary channel to maximize the
information gain brought by adding the channel. With the
designed secondary channel matrix, combining the measure-
ments of both channels achieves the best information gain.
Moreover, the proposed intrinsic algorithm can be used to op-
timize various other design criteria besides the information
rate.
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