
CHARACTERIZATION OF THE RANGE OF THE HILBERT TRANSFORM FOR BOUNDED
BANDLIMITED SIGNALS AND APPLICATIONS

Holger Boche∗

Technische Universität München
Lehrstuhl für Theoretische Informationstechnik

Ullrich J. Mönich†

Massachusetts Institute of Technology
Research Laboratory of Electronics

ABSTRACT

Recently, a new constructive formula for the calculation of the
Hilbert transform of bounded bandlimited signals was found. In this
paper we use that formula to analyze the properties of the Hilbert
transform. We further present a Fefferman-Stein-type decomposi-
tion theorem for bandlimited signals in BMO(R), i.e., bandlimited
signals of bounded mean oscillation. Based on this decomposition
we characterize the range of the Hilbert transform and derive prop-
erties of general bandlimited signals in BMO(R). We show the
boundedness of bandpass signals in BMO(R) and the boundedness
of the derivative of bandlimited signals in BMO(R). We further
find the maximum growth of the Hilbert transform of bounded
bandlimited signals.

Index Terms— Hilbert transform, bounded mean oscillation,
growth behavior, bandlimited signal, bandpass signal

1. INTRODUCTION

The classical principal value integral definition of the Hilbert trans-
form
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)
. (1)

cannot be used to define the Hilbert transform for bounded band-
limited signals, because there are bounded bandlimited signals for
which the principal value integral (1) diverges for all t ∈ R [1].

Bounded bandlimited signals are important in practical applica-
tions, for example in wireless communication systems, where the
peak-to-average power ratio (PAPR) of signals is an essential quan-
tity [2], or in the decomposition of signals in elementary compo-
nents, as described in [3].

However, the convergence problem of (1) for bounded ban-
dlimited signals does not mean that the Hilbert transform cannot
be meaningfully defined for this space. Based on the abstract H1-
BMO(R) duality theory (for a definition of H1 and BMO(R) see
next section) it is possible to define the Hilbert transform for arbi-
trary bounded signals. A major drawback of this definition is its

∗This work was partly supported by the German Research Foundation
(DFG) under grant BO 1734/13-2.
†U. Mönich was supported by the German Research Foundation (DFG)

under grant MO 2572/1-1. U. Mönich was with the Lehrstuhl für Theore-
tische Informationstechnik, Technische Universität München, when the ma-
jority of this work was completed.

abstract nature; the duality theory itself provides no formula for the
calculation of the Hilbert transform. The lack of such a formula
makes a further analysis of the properties of the Hilbert transform
difficult. Recently, some advance has been made to eliminate this
problem. In [1, 4] an explicit formula for the calculation of the
Hilbert was found for the space of bounded bandlimited signals.

Based on this formula we will analyze the properties of the
Hilbert transform of bounded bandlimited signals. We achieve a
complete understanding of the image of the space of bounded ban-
dlimited signals under the Hilbert transform and characterize the
structure of bandlimited BMO(R)-signals. Based on the findings,
we further provide an upper bound for the L∞(R)-norm of the
derivative of bandlimited BMO(R)-signals.

2. NOTATION

Let f̂ denote the Fourier transform of a function f . Lp(R), 1 ≤ p <
∞, is the space of all pth-power Lebesgue integrable functions on R,
with the usual norm ‖ · ‖p, and L∞(R) is the space of all functions
for which the essential supremum norm ‖ · ‖∞ is finite. H1 denotes
Hardy space of all functions f ∈ L1(R) for which Hf ∈ L1(R).
For 0 < σ < ∞ let Bσ be the set of all entire functions f with
the property that for all ε > 0 there exists a constant C(ε) with
|f(z)| ≤ C(ε) exp((σ + ε)|z|) for all z ∈ C. The Bernstein space
Bp

σ , 1 ≤ p ≤ ∞, consists of all functions in Bσ , whose restriction to
the real line is in Lp(R). The norm for Bp

σ is given by the Lp-norm
on the real line, i.e., ‖ · ‖Bp

σ
= ‖ · ‖p. A function in Bp

σ is called
bandlimited to σ, and B∞σ is the space of bandlimited functions that
are bounded on the real axis. We call a function in B∞π bounded
bandlimited signal.

A function f : R → C is said to belong to BMO(R), provided
that it is locally in L1(R) and 1

|I|
∫
I
|f(t) − mI(f)| dt ≤ C1 for

all bounded intervals I , where mI(f) := 1
|I|

∫
I
f(t) dt and the

constant C1 is independent of I . |I| denotes the Lebesgue measure
if the set I . We further define

‖f‖BMO(R) = sup
I

1

|I|
∫
I

|f(t)−mI(f)| dt,

where the supremum is over all bounded intervals I . Note that
‖ · ‖BMO(R) is actually a seminorm, because we have ‖c‖BMO(R) = 0
for all constants c ∈ C. Further, we denote by BMOπ the space of
all functions in Bπ that are in BMO(R) when restricted to the real
axis.

3. THE HILBERT TRANSFORM FOR B∞π
Despite the convergence problems of the principal value integral,
there is a way to define the Hilbert transform for signals in B∞π .
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This definition uses Fefferman’s duality theorem [5], which states
that the dual space of H1 is BMO(R). In this definition the Hilbert
transform Hf of a bounded bandlimited signal f ∈ B∞π is a sig-
nal in the space BMO(R). However, due to technical reasons, the
Hilbert transform is unique only up to an arbitrary additive con-
stant CBMO. In a strict mathematical sense, the Hilbert transform
in this definition is not a single signal but an equivalence class
that contains all signals that differ only by an additive constant.
By [f ] we denote the equivalence class [f ] = {g ∈ BMO(R) :
g and f differ only by an additive constant.}. This is the reason
why use a different notation for the Hilbert transform. We use Hf
instead of H , which was used in the introduction for the classical
Hilbert transform. For technical details see [4, 1].

In addition to this rather abstract definition, there also exists a
constructive approach for the calculation of the Hilbert transform
for signals in B∞π . This approach was presented in [4]. We briefly
review the most important facts.

Consider the linear time-invariant (LTI) system defined by

QEf =

∞∑
k=−∞

a−kf( · − k), (2)

where the coefficients ak, k ∈ Z, are given by

ak =
1

2π

∫ π

−π

|ω| eiωk dω =

{
π
2
, k = 0,

(−1)k−1

πk2 , k �= 0.
(3)

It can be shown (see [4] for details) that the mapping (2) defines a
bounded linear operator QE : B∞π → B∞π with norm ‖QE‖ = π.
Hence, for every f ∈ B∞π , the operator I given by

(If)(t) =

∫ t

0

(QEf)(τ) dτ, t ∈ R, (4)

is well defined. In [1] it was shown that If is a representative of the
equivalence class Hf . Loosely speaking, If is the desired Hilbert
transform Hf .

Theorem 1. Let f ∈ B∞π . Then we have Hf = [If ]. Further the
Hilbert transform is again bandlimited because If ∈ BMOπ .

Theorem 1 is very useful, because it enables us to compute the
Hilbert transform of bounded bandlimited signals in B∞π by using
the constructive formula (4), instead of using the abstract definition
which is based on the the H1-BMO(R) duality. Next, we will use
this formula to derive properties of the Hilbert transform and of gen-
eral BMOπ-signals.

4. A FEFFERMAN-STEIN-TYPE THEOREM FOR BMOπ

Fefferman’s decomposition theorem, which states that an arbitrary
BMO(R)-signal can be decomposed into the sum of a L∞(R)-
signal and the Hilbert transform of a L∞(R)-signal. For signals in
f ∈ BMOπ , i.e., signals in BMO(R) that are additionally bandlim-
ited, the above decomposition is of course also possible because
BMOπ ⊂ BMO(R). From Fefferman’s decomposition theorem
we know that the two signals that arise in the decomposition are in
L∞(R). However, since the signal f is additionally bandlimited, it
is reasonable to ask whether the decomposition can be performed in
such a way that the two signals in the decomposition are additionally
bandlimited, i.e., in B∞π . The next theorem answers this question in
the affirmative.

Theorem 2. There exists a constant C2 > 0 such that for all f ∈
BMOπ there exist two signals f1, f2 ∈ B∞π and a constant α such
that f = f1 + Hf2 + α and ‖f1‖∞ ≤ C2‖f‖BMO(R), ‖f2‖∞ ≤
C2‖f‖BMO(R).

The proof of Theorem 2 is omitted due to space constraints.
The following corollary of Theorem 2 is a structure result for

BMOπ-signals.

Corollary 1. For all 0 < β̂ ≤ 1 there exists a constant C3 such
that for all f ∈ BMOπ there exist two functions f3 ∈ B∞π and
f4 ∈ BMOβ̂π and a constant α such that f = f3 + f4 + α and

‖f3‖∞ ≤ C3(β̂)‖f‖BMO(R), ‖f4‖BMO(R) ≤ C3(β̂)‖f‖BMO(R).

Corollary 1 shows that every BMOπ-signal f can be decom-
posed into the sum of a B∞π -signal f3 and a low-pass BMOβ̂π-signal
f4. The bandwidth of the signal f4 can be arbitrarily low, i.e., every

number 0 < β̂ ≤ π can be chosen. However, a lower bandwidth of
f4 will lead in general to a larger constant C3(β̂) for the peak value
of f3. Corollary 1 will play an important role in Section 8, where we
analyze bandpass signals in BMO(R).

From a mathematical point of view Theorem 2 is interesting, be-
cause it is the direct analogon of Fefferman’s decomposition theorem
for bandlimited BMO(R)-signals.

5. RANGE OF THE HILBERT TRANSFORM

With the results in the previous section, we can characterize the
range of the Hilbert transform, i.e. the image of B∞π under H. From
the definition of H and Theorem 1 we know that the range is a sub-
set of BMOπ . Now, Theorem 2 shows that the range is essentially
BMOπ in the sense that every signal in BMOπ is the Hilbert trans-
form of some signal in B∞π modulo a signal in B∞π . More pre-
cisely, for all g ∈ BMOπ there exists a signal f ∈ B∞π such that
‖Hf − g‖∞ <∞. Of course g does not need to be bounded. How-
ever, since ‖Hf − g‖∞ < ∞, we see that the divergence behavior
of g is “created” exactly by Hf .

6. DERIVATIVE OF BMOπ-SIGNALS

For signals f ∈ B∞π there is the well-known Bernstein inequality,

‖f ′‖∞ ≤ π‖f‖∞, (5)

stating that the derivative of a bounded bandlimited signal is again
bounded and that the peak value of the derivative is smaller than or
equal to a constant factor times the peak value of the signal itself
[6, p. 49]. For general signals in BMOπ the above inequality (5) is
meaningless, because for unbounded signals in BMOπ the right hand
side of (5) is infinity. A priori it is not clear whether the derivative
of a signal in BMOπ is bounded.

The next theorem shows that every signal in BMOπ has a
bounded derivative. Moreover, the peak value of the derivative is
smaller than or equal to a constant factor times the BMO(R)-norm
of the signal. Thus, there exists an inequality similar (5) for signals
in BMOπ .

Theorem 3. There exists a constant C4 such that for all f ∈ BMOπ

we have ‖f ′‖∞ ≤ C4‖f‖BMO(R).

Theorem 3 is remarkable because it shows that signals in BMOπ ,
i.e., bandlimited BMO(R)-signals, which can be unbounded them-
selves, always have a bounded derivative. This implies that the
amount of oscillation of BMOπ-signals is limited.
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Proof. According to Theorem 2 there exists a constant C2 > 0 such
that for all f ∈ BMOπ there exist two signals f1, f2 ∈ B∞π and a
constant α such that f = f1+Hf2+α and ‖f1‖∞ ≤ C2‖f‖BMO(R),

‖f2‖∞ ≤ C2‖f‖BMO(R). It follows that f ′ = f ′1 + QEf2 and con-
sequently that

‖f ′‖∞ ≤ ‖f ′1‖∞ + ‖QEf2‖∞
≤ π‖f1‖∞ + π‖f2‖∞
≤ 2πC2‖f‖BMO(R) (6)

for all f ∈ BMOπ . In the second inequality of (6) we used Bern-
stein’s inequality [6, p. 49].

7. PEAK VALUE BEHAVIOR ON FINITE INTERVALS

The peak value of signals is important for many applications, e.g.,
for the hardware design in mobile communications. For a recent
overview, see [2]. The growth behavior of the Hilbert transform of
signals in B∞π was studied in [7]. For all f ∈ B∞π , we have the upper
bound

|(If)(t)| ≤
∫ t

0

|(QEf)(τ)| dτ

≤ ‖QEf‖∞|t|
≤ π‖f‖∞|t|, t ∈ R, (7)

which shows that the asymptotic growth of the Hilbert transform
Hf of signals f ∈ B∞π is at most linear. More precisely, for all
f ∈ B∞π there exists a signal g ∈ BMO(R) such that Hf = [g] and
g(t) = O(t).

On the other hand, using the identity (4), it can be shown that
for the B∞π -signal

f1(t) =
2

π

∫ π

0

sin(ωt)

ω
dω (8)

we have

|(If1)(t)| ≥ 2

π

(
log(|t|)− π2

4
− 1− 1

π

)
(9)

for all t ∈ R with |t| ≥ 1. Thus, there are signals f ∈ B∞π , such
that the growth of the Hilbert transform Hf is logarithmic, in the
sense that there exists a signal g ∈ BMO(R) such that Hf = [g] and
g(t) = Ω(log(t)).

From this the question arises whether the asymptotically log-
arithmic growth is actually the maximum possible growth, i.e.,
whether the upper bound (7) can be improved. The next theorem,
which was published in [7], gives a positive answer.

Theorem 4. There exist two positive constants C5 and C6 such that
for all f ∈ B∞π and all t ∈ R we have

|(If)(t)| ≤ C5 log(1 + |t|)‖f‖∞ + C6‖f‖∞.

Thanks to Theorem 4 and the structure result for BMOπ , which
was given in Theorem 2, we are able to derive a growth estimate for
arbitrary signals in BMOσ , 0 < σ <∞.

Theorem 5. Let f ∈ BMOσ , 0 < σ < ∞. Then, for all γ > σ,
there exists a constant C7 such that

|f(z)| ≤ C7 e
γ|Im(z)| log(2 + |Re(z)|)

for all z ∈ C.

Before we prove Theorem 5, we state a simple corollary and
discuss its relation to Theorem 4.

Corollary 2. Let f ∈ BMOπ . Then there exists a constant C7 such
that

|f(t)| ≤ C7 log(2 + |t|)
for all t ∈ R.

Theorem 4 has shown that the growth of the Hilbert transform
of a signal in B∞π is at most logarithmic, and Corollary 2 shows that
the growth of an arbitrary signal in BMOπ is at most logarithmic.
Since {If : f ∈ B∞π } ⊂ BMOπ , Corollary 2 is a generalization of
Theorem 4 to the whole space BMOπ .

Definition 1. LetKσ , 0 < σ <∞, denote the space of all functions

K ∈ B1
σ , whose Fourier transform K̂ is two times continuously

differentiable. For 0 ≤ ω1 < ω2 < σ <∞ let

Kσ(ω1, ω2) =
{
K ∈ Kσ : f̂(ω) = 1 for |ω| ∈ [ω1, ω2]

}
.

Sketch of the proof of Theorem 5. Let f ∈ BMOσ , 0 < σ < ∞,
and γ satisfying σ < γ < ∞ be arbitrary but fixed. Since f ∈ Bσ ,
there exists a constant C8 such that

|f(z)| ≤ C8 e
σ|z| ≤ C8 e

σ(|Re(z)|+|Im(z)|

≤ C8 e
2σ eγ|Im(z)|

(10)

for all z ∈ C with |Re(z)| ≤ 2. Next, we deal with the case
|Re(z)| ≥ 2. Choose some K ∈ Kγ(0, σ). Using integration by
parts it can be shown that there exists a constant C9 such that

|K(z)| ≤ C9
eiγ|Im(z)|

1 + |z|2

for all z ∈ C. We further have f(z) =
∫∞
−∞K(z − τ)f(τ) dτ for

all z ∈ C. Thus, it follows that

|f(z)| ≤ C9 e
iγ|Im(z)|

∫ ∞

−∞

|f(τ)|
1 + |z − τ |2 dτ. (11)

Next, we analyze the integral on the right hand side of (11) for
|Re(z)| ≥ 2. We use the abbreviation t = Re(z), and restrict our-
selves to t ≥ 2. The case t ≤ −2 is treated analogously. Let t ≥ 2
be arbitrary but fixed. Using Theorems 2 and 4 it can be shown after
some lengthy but elementary calculation that there exists a constant
C10 such that

∫ ∞

−∞

|f(τ)|
1 + |t− τ |2 dτ ≤ C10 log(2 + t).

Since the case t ≤ −2 is treated analogously, it follows that

∫ ∞

−∞

|f(τ)|
1 + |z − τ |2 dτ ≤ C10 log(2 + |Re(z)|)

for all z ∈ C with |Re(z)| ≥ 2. This together with (11) completes
the proof.
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Fig. 1. Plot of the signal If1.

8. BANDPASS SIGNALS IN BMO(R)

In general neither BMO(R)-signals nor bandpass signals are neces-
sarily bounded. Let f1 be the signal that was defined in (8). An
example for an unbounded BMO(R)-signal is If1, which is plot-
ted in Fig. 1, and an example for an unbounded bandpass signal is
t sin(πt). In this section we treat bandpass signals in BMO(R), i.e.,
BMO(R)-signals that are additionally bandpass signals, and show
that those signals are always bounded on the real axis.

Definition 2. Let BMO[ω1,ω2] be the space of all signals f ∈
BMO(R) that fulfill f(t) =

∫∞
−∞ f(τ)K(t − τ) dτ for all t ∈ R

and all K ∈ Kσ(ω1, ω2), σ > ω2.

Theorem 6. Let 0 < ω1 < ω2 < ∞ and f ∈ BMO[ω1,ω2]. Then
we have f ∈ B∞ω2

.

Proof. Let 0 < ω1 < ω2 < ∞, f ∈ BMO[ω1,ω2], and σ > ω2

be arbitrary but fixed. Further, choose some γ satisfying 0 < γ <
ω1. According to Corollary 1 there exist two signals f3 ∈ B∞ω2

and
f4 ∈ BMOγ and a constant α such that f = f3 + f4 + α. Let
K1 ∈ Kσ(0, ω2), K2 ∈ Kω1(0, γ), and K = K1 −K2. Then we
have ∫ ∞

−∞
f4(τ)K1(t− τ) dτ =

∫ ∞

−∞
f4(τ)K2(t− τ) dτ

and it follows that∫ ∞

−∞
f4(τ)K(t− τ) dτ

=

∫ ∞

−∞
f4(τ)K1(t− τ) dτ −

∫ ∞

−∞
f4(τ)K2(t− τ) dτ

= 0.

Thus, we have

f(t) =

∫ ∞

−∞
f(τ)K(t− τ) dτ

=

∫ ∞

−∞
f3(τ)K(t− τ) dτ +

∫ ∞

−∞
f4(τ)K(t− τ) dτ

+

∫ ∞

−∞
αK(t− τ) dτ

=

∫ ∞

−∞
f3(τ)K(t− τ) dτ,

where the first equality follows from our assumption that f ∈
BMO[ω1,ω2] and the fact that K ∈ Kσ(ω1, ω2). Since∫ ∞

−∞
f3(τ)K( · − τ) dτ ∈ B∞σ ,

and σ > ω2 was arbitrary, it follows that f ∈ B∞ω2
.

9. RELATION TO PRIOR WORK

Long time it was believed “that an arbitrary bounded bandlimited
function does not have a Hilbert transform. . . ” [8]. However, based
on the abstract H1-BMO(R) duality theory it is possible to define
the Hilbert transform for those signals. The main drawback of this
definition is abstract nature, which provides no formula for the cal-
culation. In [1, 4] a constructive approach was presented that makes
it possible to calculate the Hilbert transform with a simple formula.
Using this formula, we were able to characterize the range of the
Hilbert transform and derive several interesting properties of the
Hilbert transform and general BMOπ-signals. The Hilbert transform
is an important operation in communication theory and signal pro-
cessing. For example, the “analytical signal”, which was used by
Dennis Gabor in his “Theory of Communication” [9], is based on
the Hilbert transform. Further concepts in which the Hilbert trans-
form is an integral part, are the instantaneous amplitude, phase, and
frequency of a signal and the theory of modulation [8].
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