
ADAPTIVE STEP SIZE SELECTION FOR OPTIMIZATION VIA THE SKI RENTAL

PROBLEM

Amirali Aghazadeh, Ali Ayremlou, Daniel D. Calderón, Tom Goldstein

Raajen Patel, Divyanshu Vats, Richard G. Baraniuk

Rice University

Electrical and Computer Engineering

6100 Main Street, Houston, TX, 77005

ABSTRACT

Optimization has been used extensively throughout sig-

nal processing in applications including sensor networks and

sparsity based compressive sensing. One of the key chal-

lenges when implementing iterative optimization algorithms

is to choose an appropriate step size for fast algorithms. We

pose the problem of choosing step sizes as solving a ski rental

problem, a popular class of problems from the computer sci-

ence literature. This results in a novel algorithm for adaptive

step size selection that is agnostic to the choice of the opti-

mization algorithm. Our numerical results show the advan-

tages of using adaptivity for step size selection.

Index Terms— ski rental problem, sensor networks, step

size using adaptivity, sparsity

1. INTRODUCTION

Consider the following structured optimization problem:

x∗ = min
x

f(x) + λr(x) , (1)

where f(x) is an objective function and r(x) is some reg-

ularization term that imposes structure on the solution x∗.

The above problem finds applications in many fields. For

example, consider a large sensor network where each sensor

is a phasor measurement unit (PMU) that monitors electrical

waves in an electricity grid. With the current infrastructure,

the PMU devices are the only real time measurements avail-

able to sensor network operators. Using these PMU measure-

ments, it is of interest to detect power line failures in real-

time so that operators can take necessary steps to avoid a large

blackout in the sensor network. Reference [1] shows how this

problem can be posed as an optimization problem of the form

(1), where the power line outages are detected using the spar-

sity pattern of x∗.

Typical algorithms for solving (1) only compute an ap-

proximation of the true optimal solution x∗ using iterative

methods. Most such algorithms require the user to choose

a step size parameter. The efficiency of the algorithm de-

pends on this choice in an essential way. However, the user

usually has no a-priori knowledge of how to choose this pa-

rameter, and thus adaptive schemes must be used. For some

specific problems and algorithms there are well known adap-

tive schemes, while for others little is known. This motivates

our problem: can we design an adaptive step size in a way

that is agnostic to the choice of iterative method?

Our framework will be applicable to most splitting and

gradient methods. Most algorithms in these categories require

a step size to be chosen. Our adaptive scheme is motivated by

the Ski Rental Problem, a class of problems in which there is

a choice for a particular task between paying a repeated cost

versus paying a one time cost (going skiing each day for an

unknown number of days, for example) [2]. For our problem,

the task is to achieve a certain level of unknown precision.

The one time cost is the computations required for finding a

good step-size. The repeated cost is the cost of performing

one iteration. Using the break-even solution of the ski rental

problem, we propose a simple adaptive scheme for choos-

ing step-sizes when solving a generic optimization problem.

The advantage of using our framework is that it leads to the

best non deterministic algorithm for choosing step-sizes in a

generic optimization algorithm.

2. PRIOR WORK

Several algorithms have been proposed in the literature for

choosing step sizes in optimization algorithms. The most ac-

curate method is exact line search, where a separate optimiza-

tion problem is solved to find the step size [3]. However,

solving this optimization problem can be time consuming.

For this reason, most line searches rely on inexact methods

such as backtracking line search, where the step size is cho-

sen adaptively. However, in backtracking schemes the step

size decreases monotonically regardless of the energy func-

tion. Also, in many optimization scenario fixing the step size

rather than backtracking is more cost effective (see for exam-
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ple, Armijo-Wolfe Line search [4] [5]). The main feature of

our algorithm is that it can be applied to a generic optimiza-

tion algorithm. This is what differentiates our algorithm from

other algorithms in the literature.

3. THE SKI RENTAL PROBLEM

The ski rental problem [2], also known as the rent-or-buy

problem [6], is a class of problems where one needs to find

an online strategy of either paying repeated costs to perform

a task, or paying a one-time cost to perform a task.

Suppose, in a ski rental scenario, that the cost of renting

skis is s dollars and buying skis costs C dollars. The ski rental

problem here is to decide a day d such that we rent skis for

d − 1 days and then buy skis on the dth day of skiing. If we

know that we are going to ski for D days, it is easy to see

that choosing d = min{C/s,D} is optimal for minimizing

the cost of skiing. However, in practice, D is not known. In

this case, the following break-even strategy is typically used:

Break-even strategy: Buy skis on day d = C/s. (2)

It is known [7] that the above break-even strategy is opti-

mal in the sense that it minimizes the ratio of what we pay by

renting for d− 1 days and buying on the dth day and what we

would have paid if the number of days we ski were known in

advance.

4. ADAPTIVE STEP SIZE SELECTION

Motivated by the ski rental problem, we now outline our al-

gorithm for choosing the step-size when applying iterative

methods to solve the problem in (1). Consider a generic it-

erative optimization algorithm for solving (1) that depends on

a step-size τk. Every iteration of the algorithm produces two

outputs, (i) the next iterate xk+1, and (ii) a residual that mea-

sures how far the iterate lies from the true solution. Let C
be the cost (in iterations) of updating the adaptive step size.

This corresponds to the cost of buying skis in the ski rental

problem. For most adaptive schemes, C is known. After each

iteration, we either

1. Proceed with the current step size, or

2. Perform an adaptive step to obtain an improved step

size

Clearly, if the adaptive timestep search is expensive, then the

algorithm performance may suffer if we update the step size

too frequently. Conversely, if the parameter is not updated

frequently enough, runtimes will be long because of slow con-

vergence. This motivates the following problem: what is the

optimal schedule for updating the step size parameter?

It is clear that finding the optimal schedule for updating

the step size is equivalent to finding the number of days to

rent skis in the ski rental problem. We wish to apply the break

even strategy in (2) to find the optimal update schedule.

The user of our method requires some number of digits

of precision, D. This is analogous to the number of days

that skis are to be rented. Using the initial step size, each

digit of precision costs I iterations. Suppose that the cost of

achieving a digit of precision after the adaptive update is only

(1 − F )I , for some 0 < F < 1. Then the cost of obtaining

D digits using the original step size is ID. If the adaptive

update is used immediately, the cost of attaining D digits is

ID(1 − F ) + C. The break even rule states that we should

update the step size when these two costs are even, i.e., when

ID(1 − F ) + C = ID. It follows that we should compute

D = C
IF

digits of precision before we update the steps size.

If we multiply this result by I to account for the fact that each

digit required I iterations, then it become clear that we should

update the step size every C/F iterations.

5. IMPLEMENTATION OF THE ALGORITHM

Algorithm 1 Adaptive Minimization Scheme

Initialize:

0 < F < 1, t > 0, γ > 1, C > 0
B ← C/F
x ∈ Rn, r ← 2ǫ
k ← 0
while ||r|| ≥ ǫ do

r0 ← r
k ← k + 1
{x, r} ← Iteration(x, t)
I = 1/ log(r/r0)
if k = B then

{x1, r1} ← Iteration(x, t/γ)
{x2, r2} ← Iteration(x, t)
{x3, r3} ← Iteration(x, tγ)
i← argminj=1,2,3 ||rj ||
I0 ← I
I ← 1/ log(ri/r)
F ← 1− I/I0
x← xi ; r ← ri
k ← 0
B ← C/F

end if

end while

return x

Our algorithm is outlined in Algorithm 1. We initialize a

line search parameter γ, an estimated cost savings F, and a

step size t. We then define the optimal/break-even number of

iterations to be B = C/F. The algorithm proceeds as follows:

• On each iteration, an estimate of the signal x and its

residual r is obtained using the chosen iterative method.

5384



0 100 200 300 400
-4

-2

0

2

4

Iteration

lo
g
(R

es
id

u
a
ls

)
Convergence of FBS

 

 

Adaptive

Optimal

Fig. 1. The adaptive and conventional schemes applied to the

LASSO regression problem. Convergence curves show the

relative error vs iteration number. Note that the non-adaptive

scheme with optimized step size performs very well for the

first 10 iterations, but the adaptive scheme quickly becomes

more efficient once an effective stepsize is identified.

We refer to this iterative method as Iteration(·, ·) in

Algorithm 1.

• If the number of iterations k is equal to B, we “buy our

skis” by searching for a new time step. This is done

by performing an iteration with step size t/gamma, t,
and γt, and then choosing the step size that yields the

minimal residual. Note that this corresponds to C = 3,

i.e., the cost of updating the step size.

• We then update the value of F to be ones minus the

ratio of the estimated convergence rate of the new step

size to the convergence rate of the original step size.

Using this constant F , we update the break even num-

ber of iterations to B = C/F, and proceed as before.

Remark: While the user has the freedom to choose the

parameters, we recommend the following: F = 0.1, γ = 2.

6. RESULTS

In this section we will show numerical simulations to compare

adaptive and non-adaptive methods. We will apply our frame-

work to two different iterative methods: Forward-backward

splitting (FBS) [8], and the Alternating Direction Method of

Multipliers (ADMM) [9]. Both of these algorithms are very

general, and are commonly applied to minimizations where

sparsity of the results is desired.

The first test problem is a sparse regression problem

involving large random matrices and the LASSO regres-
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Fig. 2. Results of ADMM applied to the compressive sensing

image reconstruction problem. The adaptive scheme attains

performance close to that of the conventional scheme with

optimized step size parameter.

sion [10]. We wish to minimize the energy

λ||x|| +
1

2
‖Ax− b‖2

where A is a random gaussian matrix with dimensions 100×
1000. The true solution x0 is a sparse random vector con-

taining 30 non-zero elements. The measurement data is b =
Ax0 + η, where η is a random Gaussian vector with standard

deviation 10−3. Recovery was performed with λ = 10.

For comparison, we apply the FBS method using both the

adaptive and non-adaptive versions. The non-adaptive algo-

rithm was applied using an optimal step size, which was de-

termined using a script which tuned the stepsize to achieve the

lowest possible iteration count. In practice, the user does not

know this optimal timestep a-priori (which is why a adaptive

scheme is desired), and so these curves represent the best-case

performance attainable with adaptivity. In many cases, the

adaptive scheme is capable of achieving performance compa-

rable to this optimal rate, without any a-priori knowledge of

the ideal step size. The adaptive method was applied using

a starting step size of t = 0.001, which is approximately an

order of magnitude smaller than the optimal value.

The FBS method was applied to the problem, and iter-

ations were terminated when the residual dropped below a

specified tolerance. Results are shown in Table 1 and Fig-

ure 1. Note that the adaptive scheme performs well over a

wide range of tolerance parameters, ranging from 2 to 7 digits

of precision. In all but one experiment, the adaptive scheme

out-performs the non-adaptive scheme using an optimal pa-

rameter. This is possible because the behavior of the algo-

rithm changes as the active set of the solution evolves. By

updating the stepsize as the iterations progress, the adaptive
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Table 1. Comparison of the non-adaptive algorithm with our adaptive method

Tolerance Optimal t Number of iteration for non–adaptive Number of iteration for adaptive

0.01 0.00158321 84 69

0.001 0.0014636419 155 159

0.0001 0.001350814727174 217 200

0.00001 0.001351961110898 267 242

0.000001 0.00135200208679 316 284

0.0000001 0.00141270336336 349 325

Fig. 3. The 128 × 128 Shepp-Logan phantom used in the

ADMM image processing experiment. The reconstructed im-

age was visually indistinguishable from the input image, and

so only one image is shown.

scheme is able to outperform the non-adaptive, constant-step-

size method.

The second problem we consider is a compressive sens-

ing problem in which we recover an image from a subset

of its Fourier modes. In this case, we wish to recover a 2-

dimensional array of pixels, x. The problem can be solved by

minimizing the following energy:

|∇x| +
µ

2
‖RFx− b‖2

where R is a diagonal matrix of 1’s and 0’s, F is a Fourier

transform matrix, and b is a vector of observed Fourier modes.

The quantity |∇x| represents the total-variation semi-norm of

x, which enforces sparsity of the solution. Only 25% of the

Fourier modes were observed. The test image was a digital

Shepp-Logan phantom, as depicted in Figure 3.

The problem is solved using the ADMM scheme with

µ = 500, and the algorithm was terminated when 1% relative

error was reached. The optimal step size for this problem was

0.029, and the adaptive scheme was started with stepsize of

0.01. Sample convergence curves for this problem are shown

in Figure 2. In this case, both adaptive and non-adaptive

methods exhibited similar convergence, with the non-adaptive

scheme (using an optimized step size parameter) slightly out-

performing the adaptive scheme.

7. CONCLUSION

We showed how the problem of choosing step size adaptively

in optimization problems can be mapped to the ski renting

problem from computer science. Our numerical results show

that adaptivity in choosing step sizes results in superior algo-

rithms. Moreover, our proposed algorithm for choosing step

sizes using adaptivity is agnostic to the optimization problem.

We showed this in our numerical simulations where we ap-

plied our methods for two different optimization algorithms

for solving the same optimization problem. This shows the

possible application of our algorithm in various problems in-

cluding sensor networks, sparsity based signal processing and

adaptivity based sensing.
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