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ABSTRACT

Many applications in signal processing benefit from the sparsity of
signals in a certain transform domain or dictionary. Synthesis sparsi-
fying dictionaries that are directly adapted to data have been popular
in applications such as image denoising, and medical image recon-
struction. In this work, we focus specifically on the learning of or-
thonormal as well as well-conditioned square sparsifying transforms.
The proposed algorithms alternate between a sparse coding step, and
a transform update step. We derive the exact analytical solution for
each of these steps. Adaptive well-conditioned transforms are shown
to perform better in applications compared to adapted orthonormal
ones. Moreover, the closed form solution for the transform update
step achieves the global minimum in that step, and also provides
speedups over iterative solutions involving conjugate gradients. We
also present examples illustrating the promising performance and
significant speed-ups of transform learning over synthesis K-SVD
in image denoising.

Index Terms— Sparsifying transform learning, Sparse repre-
sentations, dictionary learning

1. INTRODUCTION

The sparsity of signals and images in a certain transform domain or
dictionary has been widely exploited in numerous applications in re-
cent years. While transforms are a classical tool in signal processing,
alternative models have also been studied for sparse representation
of data. The popular synthesis model states that a signal y ∈ Rn may
be represented as a linear combination of a small number of columns
from a dictionary D ∈ Rn×K [1, 2], i.e., y = Dx, where x ∈ RK

is sparse with ‖x‖0 � K. The l0 quasi-norm counts the number
of non-zeros in x. Given a signal y and synthesis dictionary D, the
following synthesis sparse coding problem of extracting the sparse
representation x has been extensively studied in recent years.

min
x

‖y −Dx‖22 s.t. ‖x‖0 ≤ s (1)

Here, s denotes the desired sparsity level, and the signal y is more
generally assumed to satisfy y = Dx+ ξ, where ξ is an error/noise
term in the signal domain. Although this problem is NP-hard (Non-
deterministic Polynomial-time hard), under certain conditions it can
be solved exactly using polynomial-time algorithms [3, 4], which
however, tend to be computationally expensive.

An alternative model for sparse representation of data is the
analysis model [1], which suggests that given the signal y and anal-
ysis dictionary Ω ∈ Rm×n, the representation Ωy ∈ Rm is sparse,
i.e., ‖Ωy‖0 � m [5]. When the signal y is noisy, the analysis model
is extended as y = q + ξ, with Ωq being sparse, and ξ representing
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the noise [5]. We refer to the extension as the noisy signal analy-
sis model. Specifically, the problem of recovering the clean signal
q from the noisy y is formulated as follows [5], and is known as
analysis sparse coding, with Ωq being the sparse code.

min
q

‖y − q‖22 s.t. ‖Ωq‖0 ≤ m− t (2)

Here, t represents the minimum number of zeros in Ωq (also called
co-sparsity). This problem is also NP-hard, just like synthesis sparse
coding. However, approximate algorithms have been proposed for
solving the analysis sparse coding problem [5], which similar to the
synthesis case are also computationally expensive.

In this paper, we focus on a generalized analysis model for
sparse representation, which we call the transform model [6]. This
model suggests that a signal y is approximately sparsifiable using
a transform W ∈ Rm×n, that is Wy = x + e where x ∈ Rm is
sparse, i.e., ‖x‖0 � m, and e is the residual in the transform do-
main. This is a generalization of the analysis model with Ωy exactly
sparse. Additionally, unlike the analysis model in which the sparse
code Ωy lies in the range space of Ω, the sparse representation x
in the transform model is not constrained to lie in the range space
of W . This in fact, makes the transform model more general than
even the noisy signal analysis model (cf. [6]). Note that the as-
sumption Wy ≈ x has been traditionally used in transform coding
[7], which pre-dates the analysis/synthesis concepts [8] (hence, the
name choice - transform model).

When a sparsifying transform W is known for the signal y, the
process of obtaining a sparse code x of given sparsity s involves
solving the following problem, which we call transform sparse cod-
ing for simplicity.

min
x

‖Wy − x‖22 s.t. ‖x‖0 ≤ s (3)

The solution x̂ is obtained exactly by thresholding Wy and retain-
ing the s largest coefficients. Conversely, given W and sparse code
x, we can recover a least squares estimate of the true signal y by
minimizing ‖Wy − x‖22 over all y ∈ Rn. The recovered signal is
then simply W †x, where W † is the pseudo-inverse of W . Thus, a
sparsifying transform is much simpler and faster to use in practice.

Adapting the sparse model to data can prove advantageous in
applications. The idea of learning a synthesis dictionary from train-
ing signals has received a lot of attention [9, 10, 11]. Adaptive
synthesis dictionaries have been shown to be useful in various ap-
plications [12, 13]. However, synthesis dictionary learning is typi-
cally non-convex and NP-hard, and algorithms such as K-SVD [10]
can get easily caught in local minima or saddle points. The learn-
ing of analysis dictionaries, employing either the analysis model or
its noisy signal extension, has also received some recent attention
[14, 15, 16, 5]. However, this problem too is typically non-convex
and NP-hard [5], and no convergence guarantees exist for the analy-
sis dictionary learning algorithms.
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In this paper, we focus on the learning of unitary as well as
well-conditioned sparsifying transforms. We will restrict ourselves
to square transforms, i.e., W ∈ Rn×n. While we have very recently
developed formulations and algorithms for transform learning [6],
in this work we will derive efficient closed-form solutions for the up-
date steps, that further enhance the convergence and computational
properties of transform learning. The resultant algorithms will be
shown to hold promise for compression and denoising.

2. TRANSFORM LEARNING

Given a matrix Y ∈ Rn×N , whose columns represent training sig-
nals, we recently proposed the following formulation for learning
square sparsifying transforms for Y [6].

(P0) min
W,X

‖WY −X‖2F − λ log detW + µ ‖W‖2F

s.t. ‖Xi‖0 ≤ s ∀ i

Here, X ∈ Rn×N is a matrix, whose columns Xi are the sparse
codes of the training signals (columns) in Y . The term ‖WY −X‖2F
in (P0) is called sparsification error [6], and denotes the deviation
of the data in the transform domain from perfect sparsity.

The log detW penalty in (P0) helps enforce full rank on the
transform W , and eliminates degenerate solutions (such as those
with zero, or repeated rows). The ‖W‖2F penalty in (P0) helps
remove a ‘scale ambiguity’ [6] in the solution (the scale ambigu-
ity occurs when the data admits an exactly sparse representation),
and together with the − log detW penalty additionally helps con-
trol the condition number of the learnt transform. Badly conditioned
transforms typically convey little information and may degrade per-
formance in applications [6]. As the parameter λ is increased in
(P0) with fixed ratio µ/λ, the optimal transform(s) become well-
conditioned. In the limit λ → ∞, their condition number tends to 1
[6].

We have shown [6] that the cost function in (P0) is lower
bounded. The objective function in (P0) has log-barriers at W for
which detW ≤ 0. These log-barriers prevent optimization al-
gorithms that minimize the objective from getting into infeasible
regions. The restriction detW > 0, can be made without loss of
generality [6] (one can switch from a W with detW < 0 to one
with detW > 0 trivially by swapping two rows of W ).

We have proposed [6] an alternating algorithm for solving (P0)
that alternates between solving for X (sparse coding step) and W
(transform update step). While the sparse coding step has an ex-
act solution, the transform update step was solved using an itera-
tive method such as conjugate gradients (CG) [6]. The alternating
algorithm for transform learning has a low computational cost [6]
compared to synthesis and analysis dictionary learning.

In this work, we will prove that both steps of transform learning
can in fact, be solved exactly and cheaply. We will first consider the
learning of a special type of transform, the orthonormal transform,
and then consider the more general case involving Problem (P0).
We refer to the latter case as ‘unconstrained’ transform learning to
distinguish it from the orthonormal case.

2.1. Orthonormal Transform Learning

There are many well-known examples of analytical orthonormal
transforms such as the discrete cosine transform (DCT), discrete
fourier transform (DFT), and Wavelets. Orthonormality enforces a
constraint of the form WTW = In, where In is the n × n identity
matrix. When this constraint is used in Problem (P0), it simplifies as

follows.

(P1) min
W,X

‖WY −X‖2F s.t. WTW = In, ‖Xi‖0 ≤ s ∀ i

A transform learnt via Problem (P1) can also be used as an orthonor-
mal synthesis dictionary (WT is a synthesis dictionary). When Prob-
lem (P1) is solved using alternating minimization, the sparse coding
step remains identical to that for Problem (P0) as follows.

min
X

‖WY −X‖2F s.t. ‖Xi‖0 ≤ s ∀ i (4)

The solution X̂ is computed exactly by thresholding WY , and re-
taining the s largest coefficients (magnitude-wise) in each column.

The transform update step involves the following optimization
problem, where we have simplified the objective of (P1).

max
W

tr
(
WYXT

)
s.t. WTW = In (5)

Here, ‘tr’ represents the matrix trace operation, and (·)T denotes the
matrix transpose operation. The above problem is of the form of the
orthogonal Procrustes problem [17]. Denoting the full singular value
decomposition (SVD) of Y XT by UΣV T (U ∈ Rn×n, Σ ∈ Rn×n,
V ∈ Rn×n), the optimal solution Ŵ = V UT (unique only when
the singular values of Y XT are non-degenerate and non-zero, since
U and V are not unique otherwise).
2.2. Unconstrained Transform Learning

Problem (P0) is a generalized version of (P1) that allows full control
over the condition number of W . While it is sufficient to consider
the detW > 0 case [6], by introducing the absolute value, we allow
both positive and negative determinants in the following formula-
tion, which makes the derivation of closed-form solutions simpler.

(P2) min
W,X

‖WY −X‖2F − λ log |detW |+ µ ‖W‖2F

s.t. ‖Xi‖0 ≤ s ∀ i

The sparse coding step in the alternating algorithm for (P2) is exactly
as in equation (4). The transform update step involves the following
unconstrained non-convex minimization.

min
W

‖WY −X‖2F + µ ‖W‖2F − λ log |detW | (6)

The objective function can be re-written as follows.

tr
{
W

(
Y Y T + µIn

)
WT − 2WYXT +XXT

}
−λ log |detW |

We decompose the positive-definite matrix Y Y T + µIn as
LLT (e.g., Cholesky decomposition). We then employ a change
of variables B = WL, and use the multiplicativity of the determi-
nant, i.e., detB = (detW )(detL), which implies, log |detB| =
log |detW | + C, where C = log |detL|. The optimization prob-
lem (6) then becomes

min
B

tr
(
BBT

)
− 2 tr

(
BL−1Y XT

)
− λ log |detB| (7)

Next, we let B have a full SVD of TΓV T , and let L−1Y XT

have a full SVD of QΣRT (T,Γ, V,Q,Σ, R are all n×n matrices),
with γi and σi denoting the diagonal entries of Γ and Σ, respectively.
The unconstrained minimization (7) then simplifies as follows.

min
Γ

[
tr

(
Γ2)− 2 max

T,V

{
tr

(
TΓV TQΣRT

)}
− λ

n∑
i=1

log γi

]
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For the inner maximization, we use the inequality tr
(
TΓV TQΣRT

)
≤ tr (ΓΣ) [18], with the upper bound being attained by setting
T = R and V = Q. The minimization with respect to Γ is then

min
γi

n∑
i=1

γ2
i − 2

n∑
i=1

γiσi − λ

n∑
i=1

log γi (8)

This problem is convex in the γi’s and the solution is obtained by
differentiating the above cost with respect to the γi’s and setting the

derivative to 0. This gives γi =
σi±

√
σ2
i +2λ

2
. Since the singular

values are all positive, the solution is γi =
σi+

√
σ2
i +2λ

2
∀i.

Thus, the closed-form solution or global minimizer for the trans-
form update step (6) can be compactly written as

Ŵ =
R

2

(
Σ+

(
Σ2 + 2λIn

) 1
2

)
QTL−1 (9)

where the square root above is the positive-definite square root. It
can be verified that the gradient of the objective of (6), is zero at this
solution. The solution (9) is also invariant to the specific choice for L
in the above derivation (note that if L1 and L2 satisfy Y Y T +µIn =
L1L

T
1 = L2L

T
2 , then L2 = L1G, where G is an orthonormal ma-

trix). The closed-form solution (9) is unique only if the singular
values of L−1Y XT are non-degenerate (distinct) and non-zero.

Note that although CG works well for the non-convex transform
update step of (P0) [6] (or equivalently, (P2)), convergence to the
global minimum of that step is not guaranteed for CG. Moreover,
the closed-form solution for the transform update provides computa-
tional speed-ups compared to CG. The closed-form updates in learn-
ing also ensure that the objective functions converge for our algo-
rithms for (P1) and (P2). Empirical evidence suggests that the iter-
ates too converge, and that transform learning is insensitive to ini-
tialization [6], leading us to conjecture that the algorithms converge
to the global minimizers of the learning problems.

The computational cost of the sparse coding step in our algo-
rithms (for (P1), (P2)) scales as O(Nn2) [6]. This cost is dominated
by the computation of the product WY , whereas the projection onto
the `0 ball only requires O(nN logn) operations, when employing
sorting. For the transform update step, the product Y XT needs to
be pre-computed, which requires αNn2 multiply-add operations for
an X with s-sparse columns, and s = αn. When the transform
update step is solved using the closed-form solutions, the computa-
tional cost scales as O(n3). On the other hand, when CG is em-
ployed [6], the cost of the transform update step scales as O(Jn3),
where J is the number of CG steps (typically, a fixed number of CG
iterations works well). Thus, the closed-form solution allows for
both a cheap and exact solution to the transform update step.

3. IMAGE DENOISING

We now consider the application of image denoising, which is a
widely studied problem of estimating an image x ∈ RP (2D image
represented as vector) from its measurement y = x+h corrupted by
noise h. We recently presented a simple image denoising technique
involving adaptive transforms [19]. Here, we introduce the follow-
ing denoising formulation, that extends our previous technique.

(P3) min
W,xi,αi

M∑
i=1

‖Wxi − αi‖22 + λQ(W ) + τ
M∑
i=1

‖Ri y − xi‖22

s.t. ‖αi‖0 ≤ si ∀ i

Here, Q(W ) = − log detW + µ
λ
‖W‖2F . Vector Ri y denotes

the ith patch of image y (M overlapping patches assumed), with

Ri ∈ Rn×P being the operator that extracts it. We assume that the
noisy patch Ri y can be approximated by a noiseless version xi that
is approximately sparsifiable (the noisy signal transform model [6]).
Vector αi ∈ Rn denotes the sparse code of xi with si non-zeros,
and the weight τ is inversely proportional to the noise level σ [12].

The solution to Problem (P3) involves a two step optimization.
In the transform learning Step 1, we fix xi = Ri y and si = s (fixed
s initially) in (P3), and solve for W and αi ∀i, using our proposed
learning algorithms. In the variable sparsity update Step 2, we up-
date the sparsity levels si for all i. Note that for fixed W and αi,
(P3) reduces to a least squares problem, that can be solved indepen-
dently for each xi. However, we only let αi be a thresholded version
of WRi y, and determine the si’s in Step 2, i.e., αi = Hsi(WRiy),
with Hsi(·) denoting the operator that retains the si largest elements
(magnitude-wise) in a vector, while setting the remaining elements
to zero. We choose the sparsity si for the ith patch such that the er-
ror term ‖Ri y − xi‖22 computed after updating xi by least squares
(with αi held at Hsi(WRiy)) is below nC2σ2 [12] (the error term
decreases to zero, as si ↗ n), where C is a fixed parameter. This
requires repeating the least squares update of xi for each i at vari-
ous sparsity levels incrementally, to determine the level at which the
error term falls below the required threshold. However, this process
can be done very efficiently (cf. [19] for details).

Once the variable sparsity levels si are chosen for all i, we use
the new si’s back in the transform learning Step 1, and iterate over
the learning and variable sparsity update steps, which leads to a bet-
ter denoising performance compared to one iteration. In the final
iteration, the xi’s that are computed (satisfying the ‖Ri y − xi‖22 ≤
nC2σ2 condition) represent the denoised patches. Once, the de-
noised patches xi are found, the denoised image x is obtained by
averaging the xi’s at their respective locations in the image, and x
is then restricted to its range (e.g., 0-255). Note that we work with
mean subtracted patches during optimization and typically learn on
a subset of all patches (cf. [19]).

4. EXPERIMENTS

For the first experiment, we learn sparsifying transforms from the√
n ×

√
n (zero mean) non-overlapping patches of the image Bar-

bara [6] at various patch sizes n. We study the performance of the
proposed algorithms involving closed-form solutions for Problems
(P1) and (P2). We compare their performance to the CG-based algo-
rithm [6] that solves (P0), and the fixed DCT. The various parameters
are set as λ = µ = 4 × 105, s = 0.17 × n (rounded to nearest in-
teger). The CG-based algorithm is executed with 128 CG iterations,
and a fixed step size of 10−8.

We measure the quality of the learnt transforms using the
normalized sparsification error, condition number, and recovery
PSNR metrics. The normalized sparsification error [6] is de-
fined as ‖WY −X‖2F / ‖WY ‖2F , and it measures the fraction
of energy lost in sparse fitting in the transform domain, an inter-
esting property to observe for the adapted transforms. The re-
covery peak signal to noise ratio (recovery PSNR) is defined as
255

√
P/

∥∥Y −W−1X
∥∥
F

in dB, where P is the number of image
pixels. It measures the error in recovering the patches Y (or equiva-
lently, the image for non-overlapping patches) as W−1X from their
sparse codes X obtained by thresholding WY . Note that the recov-
ery PSNR itself depends on the (trade-off between) sparsification
error and condition number of W [6].

Figure 1 plots the various metrics for the transforms learnt using
the various algorithms, and for the patch-based 2D DCT [6], as a
function of patch size. The run times of the various learning schemes
are also plotted. The learnt transforms provide better sparsification
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Fig. 1. Comparison of CG-based transform learning [6], Closed
Form transform learning via (P2), Orthonormal transform learning
via (P1), and DCT. Top: Normalized sparsification error vs. patch
size (left), Recovery PSNR vs. patch size (right). Bottom: Condition
Number vs. patch size (left), Run time vs. patch size (right). Note
that the CG and Closed Form curves overlap in all cases, except for
the run times.

and recovery than the analytical DCT at all patch sizes. The gap
in performance between the adapted transforms and the fixed DCT
also increases with patch size, because the size of the training set
also decreases, thereby allowing increasing benefits from adaptivity.
The transforms learnt using (P0)/(P2) are well-conditioned.

The performance of the CG-based algorithm [6] is almost iden-
tical to that of the proposed algorithm for (P2) involving closed-form
solutions. However, the latter is much faster (by 2-7 times) than the
CG-based algorithm. The actual speedups depend in general, on how
N/n scales with respect to J . The adapted well-conditioned trans-
forms also provide better sparsification and recovery (upto 0.3 dB
better recovery) compared to the adapted orthonormal transforms,
indicating the usefulness of well-conditioning over the more restric-
tive unit-conditioning. The performance gap between the adapted
well-conditioned and orthonormal transforms can be amplified fur-
ther at each patch size, by optimal choice of λ (or in other words,
optimal choice of condition number).

While we adapted the transform to a specific image (i.e., image-
specific transform) here, a transform adapted to a variety of images
(global transform) also performs well in test images. Both global
and image-specific transforms may hold promise for compression.

Next, we present preliminary results for our denoising frame-
work, employing the proposed efficient closed-form solutions in
transform learning. We add i.i.d. gaussian noise at noise level
σ = 10 to the peppers image. We choose our algorithm parameters
as n = 64, µ = λ = 106, initial s = 0.15 × n (rounded to nearest
integer), C = 1.08, and τ = 0.01/σ. We executed our denois-
ing algorithm for 3 iterations, each with 80 iterations of transform
learning. The noisy image (PSNR = 28.1 dB) is shown in Figure 2,
along with the denoised image (PSNR = 34.38 dB) obtained using
our closed-form-solution-based learning via (P2). The learnt trans-
form in this case is well-conditioned with condition number 2.28.
When the learning was done using the CG-based algorithm (256 CG
iterations) [6], we obtain similar denoising, but at about 2x slower
speed, indicating the efficiency of the proposed exact closed-form
solutions. Moreover, when our denoising algorithm is run with

Fig. 2. Noisy Images (Left), Denoised Images (Right).

orthonormal transform learning via (P1), the denoised image has
a slightly lower PSNR of 34.33 dB. The denoising gap between
non-unitary and unitary adapted transforms typically increases with
noise level.

We also compared our denoising performance to that obtained
with a 64× 256 K-SVD overcomplete synthesis dictionary [12, 20].
The latter provided a lower denoising PSNR of 34.21 dB. Im-
portantly, our denoising algorithm involving closed-form-solution-
based learning via (P2) takes only 47s to execute compared to 9.5
minutes for K-SVD, a 12x speeedup. (Note that we used a train-
ing set of smaller size for our algorithms compared to K-SVD,
since square transforms have fewer free parameters.) The results
demonstrate the significant speedups of transform-based denoising.

We repeat the denoising experiment for the cameraman image
using σ = 15. The noisy image (PSNR = 24.6 dB), and its denoised
version (PSNR = 31.60 dB) obtained using the transform adapted via
our closed-form-solution-based learning (P2), are shown in Figure 2.
The denoising PSNR is better than that obtained using the 64× 256
K-SVD synthesis dictionary (PSNR = 31.50 dB) [12, 20], while our
denoising algorithm is also much (12x) faster.

Our results here indicate the potential of transform-based de-
noising over synthesis-dictionary-based denoising. Transform-based
denoising also performs better than analysis-dictionary-based de-
noising [21]. While we presented preliminary results in this work,
we expect the denoising performance of our algorithms to im-
prove/become comparable to the state of the art (for example [22])
with multiscale and overcomplete extensions of transform learning
(similarly to the synthesis case [23]).

5. CONCLUSIONS

In this work, we studied the problem formulations for learning or-
thonormal as well as well-conditioned sparsifying transforms. The
proposed alternating algorithms involve efficient closed-form solu-
tions. The learnt transforms provide better representations than ana-
lytical ones such as the DCT for images. Moreover, our algorithm is
faster than previous ones involving iterative CG in the transform up-
date step. In the application of image denoising, our algorithms pro-
vide comparable or better performance over the synthesis K-SVD,
while being much faster.
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