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ABSTRACT

In this paper, we develop a test procedure for non-stationarity for
possibly long-memory processes. Contrary to most of the proposed
methods, the test procedure has the same distribution for short-range
and long-range dependence stationary processes.
Such tests have been already proposed in [1], but these authors do not
have taken into account the dependence of the wavelet coefficients
within scales and between scales. We also propose an application to
electric power consumption monitoring.

Index Terms— Long memory process, Wavelet, Change points.

1. INTRODUCTION

The danger of confusing long-range dependence with non-stationarity
has been pointed out by many authors. Finding an answer to this
difficult question is of importance to model time-series showing
trend-like behavior, in particular the river run-off in hydrology, the
historical temperature in the study of climates changes, asset evo-
lution in financial econometrics or packet counts in network traffic
engineering. There has been a long lasting controversy to decide
whether the deviations to short memory stationarity should be at-
tributed to long-range dependence or are related to the presence of
breakpoints in the mean, the variance, the covariance function or
other types of more sophisticated structural changes. The links be-
tween non-stationarity and long-range dependence (LRD) have been
pointed out by many authors ( [2], [3] [4], [5]) and the references
therein.
The main goal of this paper is to develop a test procedure for non-
stationarity for possibly long-memory processes. Contrary to most
of the proposed methods, the test procedure has the same distribu-
tion for short-range and long-range dependence covariance station-
ary processes, which means that this test is able to detect the pres-
ence of non-stationarity for processes showing long-range depen-
dence; in addition, the test procedure is shown to be robust to the
presence of slowly varying trends. The procedure described in this
paper deals with the problem of detecting changes which may occur
in the spectral content of a process. We will consider a process X
which, before and after the change, is not necessary stationary but
whose difference of at least a given order is stationary, so that poly-
nomial trends up to that order can be discarded. Denote by ∆X the
first order difference of X ,

[∆X]n
def
= Xn −Xn−1, n ∈ Z ,

and define, for an integer K ≥ 1 , the K-th order difference recur-
sively as follows: ∆K = ∆ ◦ ∆K−1. As defined in [6], a pro-
cess X is said to be K-th order difference stationary if ∆KX is
covariance stationary. Let f be a non-negative 2π-periodic symmet-
ric function such that there exists an integer K satisfying,

∫ π
−π |1 −

e−iλ|2Kf(λ)dλ < ∞. We say that the process X admits general-
ized spectral density f if ∆KX is weakly stationary and with spec-
tral density function

fK(λ) = |1− e−iλ|2Kf(λ) . (1)

This class of process include both short-range dependent and long-
range dependent processes, but also unit-root and fractional unit-root
processes.
In this paper, we consider the so-called a posteriori or retrospective
method (see [7, Chapter 3]). The proposed test is formulated in the
wavelet domain, where a change in the generalized spectral density
results in a change in the covariance structure of the wavelet coeffi-
cients across scales. Such tests have been already proposed in [1],
but these authors do not have taken into account the dependence of
the wavelet coefficients within scales and across scales. Therefore,
the asymptotic distribution of the test they have proposed only holds
in case i.i.d which is not the case in general settings.
The paper is organised as follows. In Section 2, we introduce the
wavelet setting and the relation ship between the generalized spec-
tral density and the variance of wavelet coefficients. Section 3 is
consecrated to our main assumptions and results. In Section 4.1, fi-
nite sample performance of the test is studied based on Monte Carlo
simulations. To end, this test is applied to river run-off.

2. WAVELET SETTING

The wavelet setting involves two functions φ and ψ and their Fourier
transforms
φ̂(ξ)

def
=
∫∞
−∞ φ(t)e−iξt dt and ψ̂(ξ)

def
=
∫∞
−∞ ψ(t)e−iξt dt, and

assume the following:

(W-1) φ and ψ are compactly-supported, integrable, and φ̂(0) =∫∞
−∞ φ(t) dt = 1 and

∫∞
−∞ ψ

2(t) dt = 1.

(W-2) There exists α > 1 such that supξ∈R |ψ̂(ξ)| (1 + |ξ|)α <
∞.

(W-3) The function ψ has M vanishing moments, i.e.∫∞
−∞ t

mψ(t) dt = 0 for all m = 0, . . . ,M − 1

(W-4) The function
∑
k∈Z k

mφ(· − k) is a polynomial of degree
m for all m = 0, . . . ,M − 1.

Condition (W-2) ensures that this Fourier transform decreases
quickly to zero. Condition (W-3) is an important characteristic
of wavelets: it ensures that they oscillate and that their scalar prod-
uct with continuous-time polynomials up to degree M − 1 vanishes.
Daubechies wavelets and Coiflets having at least two vanishing mo-
ments satisfy these conditions. Viewing the wavelet ψ(t) as a basic
template, define the family {ψj,k, j ∈ Z, k ∈ Z} of translated and
dilated functions ψj,k(t) = 2−j/2 ψ(2−jt− k), j ∈ Z, k ∈ Z.
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2.1. Discrete Wavelet Transform (DWT) in discrete time.

We now describe how the wavelet coefficients are defined in dis-
crete time, that is for a real-valued sequence {xk, k ∈ Z} and for
a finite sample {xk, k = 1, . . . , n}. Using the scaling function φ,
we first interpolate these discrete values to construct the following
continuous-time functions

xn(t)
def
=

n∑
k=1

xk φ(t− k) and x(t)
def
=
∑
k∈Z

xk φ(t− k), t ∈ R .

Without loss of generality we may suppose that the support of the
scaling function φ is included in [−T, 0] for some integer T ≥ 1.
Then xn(t) = x(t) for all t ∈ [0, n − T + 1] . We may also
suppose that the support of the wavelet function ψ is included in
[0,T]. With these conventions, the support of ψj,k is included in
the interval [2jk, 2j(k + T)]. The wavelet coefficient Wj,k at scale
j ≥ 0 and location k ∈ Z is formally defined as the scalar product
in L2(R) of the function t 7→ x(t) and the wavelet t 7→ ψj,k(t):

Wj,k
def
=

∫ ∞
−∞

x(t)ψj,k(t) dt =

∫ ∞
−∞

xn(t)ψj,k(t) dt,

j ≥ 0, k ∈ Z , (2)

when [2jk, 2jk + T)] ⊆ [0, n− T + 1], that is, for all (j, k) ∈ In,
where

In
def
= {(j, k) : j ≥ 0, 1 ≤ k ≤ nj}

with nj = 2−j(n− T + 1)− T + 1 . (3)

If ∆MX is stationary, then for [8, Eq 17] the process {Wj,k}k∈Z
of wavelet coefficients is stationary but the two-dimensional process
{[Wj,k ,Wj′,k]T }k∈Z with j ≥ j′ is not stationary. This is why we
consider instead the stationary between scale process {[WT

j,k(j −
j′), Wj,k]T }k∈Z . where the superscript T denotes the transpose
and Wj,k(u), u = 0, 1, . . . , j, is defined as follows:

Wj,k(u)
def
= [Wj−u,2uk, Wj−u,2uk+1, . . . ,Wj−u,2uk+2u−1]T .

For all j, j′ ≥ 1, the covariance function of the between scale
process is given by

Cov (Wj,0,Wj,k(u)) =

∫ π

−π
eiλk Dj,u(λ; f) dλ , (4)

where Dj,u(λ; f) is the cross-spectral density function of the
between-scale process. For further details, we refer the reader
to [8, Corollary 1]. The case j = j′ corresponds to the spectral
density of the with-scale process {Wj,k}k∈Z.

2.2. The wavelet spectrum and the scalogram.

Let X = {Xt, t ∈ Z} be a real-valued process with wavelet coeffi-
cients {Wj,k, k ∈ Z} and define σ2

j,k = Var(Wj,k) . If ∆MX
is stationary, then {Wj,k, k ∈ Z}, is also stationary. Then, the
wavelet variance σ2

j,k does not depend on k, σ2
j,k = σ2

j . The se-
quence (σ2

j )j≥0 is called the wavelet spectrum of the process X . If
moreover ∆MX is centered, the wavelet spectrum can be estimated
by using the scalogram, defined as the empirical mean of the squared
wavelet coefficients computed from the sample X1, . . . , Xn: σ̂2

j =

1
nj

nj∑
k=1

W 2
j,k . By [8, Proposition 1], if K ≤ M , then the scalo-

gram ofX can be expressed using the generalized spectral density f

appearing in (1) and the filters Hj defining in [8, Eq 14] as follows:

σ2
j =

∫ π

−π
|Hj(λ)|2 f(λ) dλ, j ≥ 0 . (5)

3. ASYMPTOTIC DISTRIBUTION OF THE TEST
STATISTIC

LetX1, . . . , Xn be the n observations of a time series, and denote by
Wj,k for (j, k) ∈ In with In defined in (3) the associated wavelet
coefficients. In view of (5), if X1, . . . , Xn are a n successive ob-
servations of a K-th order difference stationary process, then the
wavelet variance at each given scale j should be constant. If the pro-
cess X is not K-th order stationary, then it can be expected that the
wavelet variance will change either gradually or abruptly (if there is
a shock in the original time-series). This thus suggests to investi-
gate the consistency of the variance of the wavelet coefficients. We
will adapt the approach developed in [9], which uses cumulative sum
(CUSUM) of squares to detect change points in the variance. Under
the null hypothesis that X is K-th order stationary, a multiple scale
procedure aims at testing that the scalogram in a range satisfies
H0 : σ2

j,1 = · · · = σ2
j,nj

, ∀ j ∈ {J1, J1 + 1, . . . , J2} where
J1 and J2 are the finest and the coarsest scales included in the pro-
cedure, respectively. Consider the following process YJ1,J2 [i] =(
W 2
J2,i,

1∑
u=0

W 2
J2−1,2i+u, . . . ,

2(J2−J1)−1∑
u=0

W 2
J1,2

(J2−J1)i+u

)T
and

denote the corresponding partial sum process by

SJ1,J2(t) =
1
√
nJ2

bnJ2
tc∑

i=1

YJ1,J2 [i] . (6)

Because wavelet coefficients at different scales are not uncorrelated,
both the within-scale and the between scale covariances need to be
taken into account. We use The Bartlett estimator of the covariance
matrix of the square wavelet’s coefficients for scales {J1, . . . , J2},
Γ̂J1,J2 given by :

Γ̂J1,J2 =

q(nJ2
)∑

τ=−q(nJ2
)

wτ [q(nJ2)]γ̂J1,J2(τ) , (7)

where γ̂J1,J2 is the usual empirical covariance sequence based on
observations YJ1,J2 [1], . . . , YJ1,J2 [nJ2 ] and, for a given integer q,
the so-called Bartlett weights are defined by

wl(q) = 1− |l|
1 + q

, l ∈ {−q, . . . , q} . (8)

Theorem 1 Suppose that X is a Gaussian process with generalized
spectral density f . Let (φ, ψ) be a scaling and a wavelet function
satisfying (W-1)-(W-4). Assume that ∆MX is non-deterministic and
centered, and that λ2Mf(λ) is two times differentiable in λ with
bounded second order derivative. Assume more that q(nJ2) →
∞ and q(nJ2)/nJ2 → 0 as nJ2 →∞. Then as n→∞,

Γ̂J1,J2 = ΓJ1,J2 +OP

(
q(nJ2)

nJ2

)
+OP (q−1(nJ2)), (9)

where ΓJ1,J2 , denoted the asymptotic covariance matrix of SJ1,J2(1)
and,

Γ̂
−1/2
J1,J2

(SJ1,J2(t)− E [SJ1,J2(t)])
L−→ B(t), (10)
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where the weak convergence holds in the space DJ2−J1+1[0, 1]
of cádl’ag functions defined on [0, 1] and valued in RJ2−J1+1,
and B(t) = (BJ1(t), . . . , BJ2(t)) are independent Brownian mo-
tions. As classical in convergence results for cádl’ag functions,
DJ2−J1+1[0, 1] is equipped with the Skorokhod metric, see [10,
Chapter 3].

The proof of Theorem is omitted here for reasons of space.
The test is based on the statistics TJ1,J2 : [0, 1] → R+ defined

by

TJ1,J2(t)
def
= (SJ1,J2(t)− tSJ1,J2(1))T Γ̂−1

J1,J2

(SJ1,J2(t)− tSJ1,J2(1)) , t ∈ [0, 1] . (11)

As a consequence of (10), TJ1,J2(t) also converges weakly in the
Skorokhod space D([0, 1]), as nJ2 →∞,

TJ1,J2(t)
L−→

J2∑
`=J1

(
B0
` (t)

)2
(12)

where {B0
j (t), t ≥ 0}j=J1,...,J2 are independent Brownian bridges.

Using continuous mapping theorem (see [10, Theorem 2.7]), we can
then define a Cramer Von-Mises test statistic as :

CVM(J1, J2)
def
=

∫ 1

0

TJ1,J2(t)dt , (13)

which converges to C(J2 − J1 + 1) where for any integer d,

C(d)
def
=

∫ 1

0

d∑
`=1

[
B0
` (t)

]2
dt . (14)

The test rejects the null hypothesis when CVM(J1, J2) ≥ c(J2 −
J1 + 1, α), where c(d, α) is the 1− αth quantile of the distribution
of C(d). The distribution of the random variable C(d) has been
derived by [11] (see also [12] for more recent references).

4. APPLICATIONS

4.1. Application on simulated data

In this section, we report the results of a limited Monte-Carlo experi-
ment to assess the finite sample property of the test procedure. Recall
that the test rejects the null if CVM(J1, J2) defined in (13) exceeds
the (1−α)-th quantile of the distributions C(J2−J1 + 1) specified
in (14). To study the influence on the test procedure of the strength of
the dependency, we consider different classes of Gaussian processes,
including white noise, autoregressive moving average (ARMA) pro-
cesses as well as fractionally integrated ARMA (ARFIMA(p, d, q))
processes which are known to be long range dependent. In all the
simulations we set the lowest scale to J1 = 1 and vary the coars-
est scale J2 = J . We used a wide range of values of sample size
n, of the number of scales J and of the parameters of the ARMA
and ARFIMA processes but, to conserve space, we present the re-
sults only for n = 1024, J = 3, 4, 5 and four different models: a
white noise (WN), an AR(1) process with parameter φ = 0.9 and
two ARFIMA(1,d,0) processes with memory parameter d = 0.3,
d = 0.4 respectively and φ = 0.9. In our simulations, we have used
the Newey-West estimate of the bandwidth q(nj) for the covariance
estimator (as implemented in the R-package sandwich). In the AR
and the ARFIMA cases, the test rejects the null much too often when
the number of scales is large compared to the sample size (the diffi-
cult problem being in that case to estimate the covariance matrix of
the test). However, when J2 = 3, the target rejection rate is obtained
(cf: Table 1).

WN AR ARFIMA
d = 0.3 d = 0.4

J = 3 0.050 0.045 0.033 0.053
J = 4 0.041 0.200 0.160 0.13
J = 5 0.086 0.340 0.400 0.556

Table 1. Empirical level of CVM for some gaussian processes.

4.2. Application on real data

We present an application of the proposed procedure in the context
of electric power consumption monitoring in a residential building.
Motivations to perform such a monitoring are various. As mentioned
in [13], small and large utility companies are interested in many as-
pects of such a monitoring. In the long-term understanding the influ-
ence of weather or external conditions on the consumption behaviour
of consumers would be helpful to help forecasting and coping with
load peaks. It would also help defining more accurate energy prices.
In the shorter term the advent of sustainable electricity production
methods have raised complex control issues for integrating these sys-
tems into existing ones. They usually entail a continuous monitoring
of power consumption in individual households to detect energy load
changes and adapt to them.

To illustrate our change-point detection approach in this context,
we consider the “Individual household electric power consumption”
dataset freely available from the widely used UCI repository [14].
Data consist of electric power consumption measurements in one
residential building. Notably the global active power as well as three
sub-metering values corresponding to particular rooms were sam-
pled every minute from December 2006 to November 2010. In order
to focus on comparable daily energy consumptions, we consider a
24-hour integrated version of the global active power, from which
sub-metering values are subtracted (event-based consumption due to
washing machine, tumble-drier, . . . ). Data imputation of missing
values has been made using a k-nearest neighbour approach [15].
The time series has also been seasonally adjusted to remove the
12-month cycle. The approach describes above assumes at most
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Fig. 1. Seasonal decomposition of the daily power electric consumption
from 16-Dec-2006 to 30-Nov-2010. From top to bottom, 1) daily energy
consumption in the household (24-hour integrated version of the raw data),
2) the seasonal component based on the 12-month natural cycle obtained by
averaging over the four available years, 3) the background trend and 4) the
remainder, which corresponds to the noise. Units are in watts per hour.
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one possible change point in the time series. If one is interested
in multiple change points detection, the Iterated Cumulative Sums
of Squares (ICSS) Algorithm proposed by [9] is easily adapted to
our context.
Let us denote by T̃ k1:k2

J1,J2
(k) the statistic TJ1,J2(t) based on the ob-

servations YJ1,J2 [k1 : k2) = {YJ1,J2(k), k1 ≤ k < k2} in abso-
lute time k = k1, . . . , k2. In other words, we set, for k1 ≤ k ≤ k2,

T̃ k1:k2
J1,J2

(k) =

(
S̃J1,J2(k)− k − k1

k2 − k1
S̃J1,J2(k2)

)T
(

Γ̂k1:k2
J1,J2

)−1
(
S̃J1,J2(k)− k − k1

k2 − k1
S̃J1,J2(k2)

)
,

where Γ̂k1:k2
J1,J2

is the estimator Γ̂L
J1,J2 based on YJ1,J2 [k1 : k2) and

S̃J1,J2(k) =
1√

k2 − k1

k∑
i=k1

YJ1,J2 [i] .

Finally we denote by CVMk1:k2
J1,J2

the corresponding test statistic,

CVMk1:k2
J1,J2

=
1

k2 − k1

k2−1∑
k=k1

T̃ k1:k2
J1,J2

(k) .

The multiple change points detections algorithm of [9, Section 3]
can be readily applied to T̃ k1:k2

J1,J2
(k) with the appropriate quantiles.

To this end we denote by c the asymptotic quantile associated to
probability 0.95. We quote this algorithm hereafter for convenience.
Step 0 Let k1 = 1

Step 1 Calculate T̃
k1:nJ2
J1,J2

(k) for k1 ≤ k < nJ2 . Let k∗k1:nJ2
be the

maximizing point of this sequence. If CVM
k1:nJ2
J1,J2

> c, consider
that there is change point at k∗k1:nJ2

and proceed to Step 2a. Oth-
erwise, there is no evidence of variance changes in the series. The
algorithm stops.
Step 2a Let k2 = k∗k1:nJ2

. Evaluate T̃ k1:k2
J1,J2

(k) for k1 ≤ k < k2.

If CVMk1:k2
J1,J2

> c, then we have a new point of change and should
repeat Step 2a until CVMk1:k2

J1,J2
≤ c. When this occurs, we can say

that there is no evidence change in k = k1, . . . , k2 and, therefore,
the first change point is then kfirst = k2.
Step 2b Now do a similar search starting from the first change point
found in step 1 toward the end of the series. Define a new value for
k1: let k1 = k∗k1:nJ2

. Evaluate T̃ k1:k2
J1,J2

(k) for k1 ≤ k < k2 and

repeat step 2b until CVMk1:k2
J1,J2

≤ c. Then let klast = k1 − 1
Step 2c If kfirst = klast, there is just one change point. The al-
gorithm stops there. If kfirst < klast, keep both values as possible
change points and repeat Step 1 and Step 2 on the middle part of the
series; that is, k1 = kfirst and k2 = klast. Each time that Steps 2a
and 2b are repeated, the result can be one or two more points. Call
N the number of change points found so far.
Step 3 If there are two or more possible change points, make sure
they are in increasing order. Let cp be the vector of all the possible
change points found so far. Define the two extreme values cp0 = 0
and cpN+1 = nJ2 . Check each possible change point by calculating
T̃
cpj−1:cpj+1

J1,J2
j = 1, . . . , N . If CVM

cpj−1:cpj+1

J1,J2
> c, then cpj

will be replaced by the corresponding change point; otherwise elim-
inate it. Repeat Step 3 until the number of change points does not
change and the points found in each new pass are ”close” to those
on the previous pass. We consider that if each cpj has not increase

nor decrease by more than one from the previous iteration, then the
algorithm has converged.
Applied to T̃ k1:k2

J1,J2
(k), the output of this algorithm is a (possi-

bly empty) set of change points cp1, . . . , cpN corresponding to
indices at scale J2; hence the corresponding time indices are
cp12J2 , . . . , cpN2J2 . We applied this method to detect multiple
changes in the spectral content of the absolute remainder obser-
vations (after removal of trend and seasonal component). We set
J1 = 1 and J2 = 3 in our application. The interpretation of
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Fig. 2. Detection of change points in the absolute remainder time series.
Red dotted lines correspond to change points

the obtained change points has been made on the raw series. It
should be noted that two main kinds of change points are obtained.
First a group of “summer” points clearly correspond to periods of
vacations. This is confirmed by the fact that the electric power con-
sumption clearly decreases below the 10-day moving average of the
series of daily consumptions during 7 to fourteen consecutive days.
This observation confirms the ability of the proposed algorithm to
detect periods of unusual low power consumption. Second “winter”
change points have been detected on the series. Nevertheless it
should be noted that periods (defined as a few consecutive days) of
high electrical load are main causes of detected change points, while
isolated consumption peaks, involving only one day, are usually
not detected. This last point clearly illustrates a normal behaviour
of the algorithm. Change point detection is indeed simultaneously
considered over different scales of the wavelet decomposition of
the series. It is thus designed for identifying concurrent changes
over time scales, which is clearly not the case when only one day is
involved.

While the application demonstrates the ability of the algorithm
to identify changes in the distribution of the series, further interpreta-
tion of the results would need complementary information about the
behaviour of the inhabitants. This constitutes a research direction
currently at stake for this particular application.
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