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ABSTRACT
The Hilbert envelope is a well-known indicator for ampli-
tude modulation in subband time series. However, frequency
modulation estimators typically impose temporal smoothness
constraints that limit their general use for stochastic signals.
We introduce the complementary envelope as a direct indica-
tor of stochastic phase coherence and frequency modulation.
Rooted in the second-order statistics of randomly-phased
sinusoids, the complementary envelope is distinct from the
Hilbert envelope, and can be estimated easily and separately.
We propose a new complementary envelope estimator based
on modified multitaper spectral analysis, and use it to reveal
previously unseen FM-like behavior in ship propeller noise.

Index Terms— Modulation, complementary statistics,
impropriety, multitaper, time-frequency

1. INTRODUCTION

Many real-world signals can be characterized by amplitude-
and frequency-modulation (AM-FM) in subbands. Esti-
mation of these components is called demodulation, and
has proven useful in psychoacoustics [1], automatic speech
recognition [2], and vocoding for cochlear implants [3].

Much has been written on AM-FM estimation, particu-
larly as an ill-posed problem requiring constraints that are ax-
iomatic [4, 5], operational [6, 7], or bandlimited [8, 9]. How-
ever, demodulation is rarely discussed in terms of sufficient
statistics. Without a complete statistical characterization of
the signal, conventional AM-FM decompositions often per-
form poorly in realistic conditions including random noise,
channel distortion, and interfering sources.

The problem is the absence of a direct estimator for phase
coherence in random signals. In contrast, the well-known
Hilbert envelope provides an unambiguous, fundamental
statistic for subband amplitude. Modern demodulation meth-
ods are essentially parametric estimators of the Hilbert en-
velope, as in frequency domain linear prediction [2] and
bandwidth-constrained demodulation [8, 9].
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Without a comparable phase reference, there is an arbi-
trariness to sinusoidal AM-FM models. For example, as-
sumptions of slowly varying time-frequency trajectories [7,
9, 10] can represent clean speech with high fidelity, but do
not generalize to other signals or situations involving non-
stationary noise. Alternatively, the Hilbert envelope residual
has numerous well-documented artifacts, such as nonphysical
discontinuities [5] and bandwidth expansion [6, 7].

In this paper, we introduce the complementary envelope
as a direct estimator for subband phase coherence. This new
envelope reveals FM-like behavior in stochastic signals, even
for non-smooth, bursty modulations. More importantly, the
complementary envelope is a second-order estimator with
deep roots in recently developed, complex statistics of ana-
lytic signals [11]. This means that, unlike residual Hilbert
phase, the complementary envelope is applicable to optimal
complex subband estimation by means of widely linear [12]
operators.

We begin in Section 2 by deriving the two envelopes of a
Gaussian random process. Then in Section 3, we connect the
complementary envelope to FM-like variations. We derive a
practical estimator based on multitaper theory in Section 4,
and use it to reveal frequency modulation in ship propeller
noise in Section 5. Finally, we conclude in Section 6.

2. THE TWO ENVELOPES OF A
GAUSSIAN PROCESS

Let x[n] be a real-valued zero-mean Gaussian random pro-
cess. The instantaneous variance is

V [n] = E{x2[n]} (1)

where E denotes the expected, or average, value.
Next, we show that V [n] consists of two “envelopes,” one

being the squared Hilbert envelope and the other being our
new contribution. Let xa[n] be the analytic signal defined by

xa[n] =
1

π

∫ π

0+
X(ω)ejωndω (2)
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whereX(ω) is the complex Fourier transform1 of x[n], and is
itself a random process. It is easy to show that

x[n] = Re{xa[n]} = 1/2(xa[n] + x∗a[n]) (3)

using ∗ to denote complex conjugation, and therefore

2V [n] = E{|xa[n]|2}+ Re{E{x2a[n]}}. (4)

We refer to the two terms in (4) as the “envelopes” of x[n].
Let us denote P [n] = E{|xa[n]|2}. This is the instantaneous
power envelope, or squared Hilbert envelope, of the subband
signal. We also introduce the new, complementary envelope
C[n] = E{x2a[n]}.

These two envelopes have distinct spectral characteristics.
When x[n] is bandpass, for example a subband signal, the en-
velopes separate into low-frequency and high-frequency re-
gions. The magnitude-square in (4) corresponds to frequency-
domain autocorrelation,

P (ω) =
1

2π

∫ π

−π
E{X(u)X∗(ω + u)}du (5)

which is necessarily lowpass. In contrast, the complex-square
term induces frequency-domain autoconvolution,

C(ω) =
1

2π

∫ π

−π
E{X(u)X(ω − u)}du (6)

and results in symmetric double-frequency sidebands. Fig-
ure 1 illustrates both envelopes and their relation to x[n] in
the frequency domain. The symmetries shown in this figure
are deliberate. The Hilbert envelope is necessarily Hermitian,
or conjugate, symmetric in the frequency domain, whereas
there is no symmetry constraint on the complementary enve-
lope spectrum.

Equation (4) is important because squaring and lowpass
filtering is a common method of envelope estimation. In the
remainder of this paper, our intent is to prove that the side-
band terms, previously treated as “unwanted” terms, uniquely
capture the phase coherence of x[n].

3. FREQUENCY-MODULATION IN THE
COMPLEMENTARY ENVELOPE

In this section, we show how the formalism of subband en-
velopes leads to useful interpretations of second-order statis-
tics in terms of power and phase coherence, and amplitude
and frequency modulation.

1Such a process is said to be “harmonizable” [13], and the integral is
technically of the Riemann-Stieltjes variety. Here, we use simpler Riemann
notation under the mild assumption that x[n] is time-limited to some long
interval N , which defines a chosen frequency resolution of interest 2π/N .

X (ω)P(ω)
C(ω)

ω0 2ω0
−ω0−2ω0

Fig. 1. Frequency-domain sketch showing the basedband
power envelope spectrum P (ω), sideband complementary en-
velope spectrumC(ω), and original bandpass signal spectrum
X(ω).

3.1. Connection to the Impropriety Literature

Schreier and Scharf [11] discuss the “complementary covari-
ance” E{xa[n1]xa[n2]} and its conventional counterpart, the
Hermitian covariance E{xa[n1]x∗a[n2]} in detail. Here, we
restrict our focus to instantaneous variances, or envelopes,
as defined in Section 2. In other words, Figure 1 is a one-
dimensional reduction from the bivariate spectral characteri-
zation of Schreier and Scharf.

If C[n] is nonzero, then xa[n] falls in the category of
improper [14] or second-order noncircular [15] random pro-
cesses. Otherwise, it is called proper or circular. The dis-
tinction becomes clear in the subband formalism of Figure 1,
where propriety implies a strictly “slowly-varying” bandpass
process due to vanishing complementary sidebands.

The operational consequences of impropriety are well
known. Picinbono and Chevalier [12] showed that least-
squares estimators are linear only for proper processes, and
“widely linear” otherwise. Furthermore, widely linear and
similarly “augmented” forms [16] provide a second-order
statistical foundation for optimal, coherent estimation of ran-
dom processes [17, 18].

Widely linear estimation is a possible application for the
complementary envelope, but we will not go into detail here.
Instead, our present goal is to determine the physical proper-
ties of the complementary envelope. In the next subsection,
we derive a plausible signal model that leads to meaningful
envelopes with AM-like and FM-like properties.

3.2. Polarized Modulation Signal Model

Suppose x[n] is bandpass. For any midband frequency ω0,
there exist real, lowpass Gaussian processes a[n] and b[n]
with zero mean, for which

x[n] = a[n] cos(ω0n)− b[n] sin(ω0n). (7)

This is called Rice’s representation [19]. Applying Bedrosian’s
theorem [20], we obtain

xa[n] = (a[n] + jb[n]) ejω0n. (8)
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Fig. 2. Example ensemble of a polarized random process with
average phase of π/2 radians.

The power and complementary envelopes are hence related to
the quadratic forms

|xa[n]|2 = a2[n] + b2[n]

x2a[n] =
(
a2[n]− b2[n] + j2a[n]b[n]

)
ej2ω0n. (9)

The point of this derivation is to show that the power envelope
P [n] = E{|xa[n]|2} is the average power of a[n] and b[n],
with no indication of relative power difference or correlative
interaction. With regard to the cosine and sine components in
(7), power difference and cross-correlation encode a form of
statistical phasing.

To better understand random phasing, let us consider the
elemental case of a sinusoid with scalar coefficients,

s[n] = a cos(ω0n)− b sin(ω0n) (10)

where a and b are jointly Gaussian distributed with zero mean.
The phasor given by

z = a+ jb = (a′ + jb′)ejθ (11)

is complex-Gaussian with elliptical parameters in the com-
plex plane shown by Ollila [21]. We define θ as the angle of
orientation of the main axis of the ellipse, such that a′ and b′

as mutually uncorrelated. The non-normalized eccentricity is
then simply ε = E{a′2} − E{b′2}.

The eccentricity is fundamentally related to local phase
coherence of sinusoids in Rice’s representation. For ε = 0,
the ellipse degenerates to a circle in the complex plane and
the phase of z is uniformly distributed in [0, 2π]. For ε > 0,
the phase distribution is no longer uniform and has a preferred
angular orientation, the average angle θ. This is equivalent to
the improper case E{z2} 6= 0 for which s[n] is “polarized”
[22] with non-uniform random phase. Figure 2 shows exam-
ple realizations of s[n] with nonzero eccentricity and average
phase θ = π/2.

The point of these illustrations is to demonstrate how si-
nusoidal phase manifests in a Gaussian random signal. Re-
turning to (7), the envelopes a[n] and b[n] can be seen as a
time-varying elliptical distribution in the complex plane. The

magnitude of C[n] is proportional to the time-varying eccen-
tricity, while variations in ∠C[n] = θ[n] signify phase or fre-
quency modulations within the subband.

4. MULTITAPER ENVELOPE ESTIMATOR

In practice, the expected value E{·} is unobtainable. Esti-
mation of C[n] and P [n] is particularly problematic because
impropriety implies that x[n] is nonstationary [11] and hence
familiar ergodic theorems do not apply. In the following, we
propose a practical estimator based on a new complementary
extension of Thomson’s classic multitaper technique [23].

Let us consider a real-valued, broadband Gaussian signal
y[n]. We assume a sum-of-products synthesis

y[n] =
∑
i

(ai[n] + jbi[n]) e
jωin (12)

which combines multiple frequency bands of the form (7).The
goal of this section is to estimate the envelopes of any ith band
under this model.

Following Thomson’s eigenspectral argument [23], it is
possible to compute multiple, orthogonal samples of the com-
plementary envelope at the expense of some time-frequency
resolution. Defining the estimation bandwidth as 0 < W <
1/2 and the analysis window length as N samples, we de-
note vk[n] as the set of discrete prolate spheroidal sequences
(DPSS) with time-frequency product of 2NW . There are
K = 2NW − 1 such tapers, for k = 0, ...,K − 1 and
n = N/2, ..., N/2. The tapers are mutually orthogonal and
maximally concentrated in the frequency range [−W,W ].

From the DPSS tapers, we construct K parallel spectral
analyzers for the ith band, of the form

Xk[n, ωi) =
∑
r

vk[n− r]y[r]e−jωir. (13)

We note that these are basebanded subbands, frequency-
shifted to center on zero Hertz. As a result, the complemen-
tary envelope estimate is similarly basebanded or lowpass.
The basebanded, complementary envelope estimate is the
alternating average

C̃[n, ωi) =
1

K

K−1∑
k=0

(−1)kX2
k [n, ωi). (14)

Sign alternation comes from the alternating even/odd sym-
metry in the DPSS tapers. The squared spectrum V 2

k (ω) is
positive for k even and negative for k odd, so sign alterna-
tion ensures a coherent sum over k. No such alternation is
required for the power envelope estimate, obtained by

H̃[n, ωi) =
1

K

K−1∑
k=0

|Xk[n, ωi)|2 (15)
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Fig. 3. Spectrogram of the multitaper Hilbert power envelope
for propeller cavitation noise, analyzed with a 75-millisecond
window and plotted with 30-dB colormap.

which is Thomson’s multitaper spectrum at discrete frequen-
cies ωi.

Like any estimator, (14) and (15) operate on assumptions
that constrain the observable properties of y[n]. We require
the following assumptions: 1) the components ai[n] and bi[n]
each appear nearly stationary within a window of length N ,
and 2) the power spectra of ai[n] and bi[n] are each relatively
flat within the bandwidth W of the DPSS analysis tapers.
This is emphatically not the same as quasi-stationarity in y[n],
but rather a requirement on the elliptical parameters of highly
nonstationary sinusoids in y[n].

5. ANALYSIS OF PROPELLER CAVITATION NOISE

To see the complementary envelope in practice, we now give
an example with underwater propeller noise, or cavitation.
This is an important signal because the noise from a ship’s
propeller is characteristic of the type of ship and its speed.
Understanding cavitation noise is vital for tracking and iden-
tifying vessels of interest in possibly crowded shipping lanes.

Cavitation noise is also a challenging example because
the signal is highly stochastic. Cavitation is a chaotic process
of collapsing water vapor bubbles that are modulated by the
churning of the propeller blades. Conventional amplitude de-
modulation extracts only the power envelope [24] under the
assumption that the subband phase is statistically indetermi-
nate, or E{a2[n]} = E{b2[n]} in (7).

Multitaper analysis suggests otherwise. We used mer-
chant ship noise obtained from [25], sampled at 16 kHz. We
chose the following analysis parameters: N = 512 samples,
with K = 8 for a bandwidth of 280 Hz. Figures 3 and 4 dis-
play estimated power and complementary envelopes, respec-
tively. In Figure 4, the complementary envelope reveals clear
frequency modulations in the form of narrowband movements
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Fig. 4. Spectrogram of a multitaper complementary power
envelope for propeller cavitation noise, analyzed with a 75-
millisecond window and plotted with 30-dB colormap. Fre-
quencies are plotted relative to 900 Hz.

in the spectrogram. For comparison, the power envelope es-
timate is lowpass with forced symmetry in the frequency axis
of the spectrogram.

In this example, the complementary envelope reveals a
rich time-frequency structure otherwise unseen in the Hilbert
envelope. This information could possibly precede the design
of least-squares optimal filters and classification features.

6. CONCLUSION

We have shown that the complementary envelope is distinct
from the Hilbert, or power, envelope, and equally unambigu-
ous as a second-order statistic of a nonstationary Gaussian
process. Our main theoretical result connects the comple-
mentary envelope to time-varying elliptical parameters of
randomly-phased sinusoids. Consequently, the complemen-
tary envelope contains FM and other second-order statistics
which are lost in the forced spectral symmetry of the Hilbert
envelope. To estimate the complementary envelope, we pro-
posed a new multitaper-based spectral analysis. We used the
estimator to reveal FM-like modulations in propeller noise,
which opens the possibility of analyzing highly stochastic
signals in a coherent least-squares sense. A possible direc-
tion for future work is to relate multitaper estimation to the
sufficient statistics of a signal.

We would like to acknowledge enlightening discussions
with P. Schreier and L. Scharf, and the helpful comments of
the anonymous reviewers.
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