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ABSTRACT

This paper addresses the issue of the retrieval of the compo-
nents of a multicomponent signal from its short-time Fourier
transform. It recalls two popular reconstruction methods, and
extends each of them for the case of strong frequency mod-
ulation, by taking into account the second derivative of the
phase. Numerical experiments illustrate the improvement and
compare the methods.

Index Terms— multicomponent signals, short-time Fourier
transform, ridge analysis, chirps

1. INTRODUCTION

Many signals from the physical world, e.g. speech or physio-
logical records, can be modelled as a sum of amplitude- and
frequency-modulated (AM/FM) waves often termed modes.
In the past few decades, there has been an increasing inter-
est in designing new accurate representations and processing
methods for these types of signals.

The short-time Fourier transform (STFT) is one of the
simplest linear time-frequency (TF) transform, and is well
adapted to process such signals. The starting point for the
analysis of these signals is to compute their short-time Fourier
transform (STFT), whose local maxima in frequency appear
to draw so-called ridges in the TF plane. Based on a first or-
der approximation of the phase of the components making up
the signal, a mode retrieval algorithm is obtained by consid-
ering the STFT on each ridge (see for instance [1, 2]). How-
ever, this first-order approximation appears to be particularly
sensitive to the ridge estimation, and may be no longer valid
either when the modes are not well separated or when they
are contaminated by noise. For this reason, it may be sensi-
ble to consider the transform not only on the ridge but in its
vicinity. This key idea was exploited by the synchrosqueezing
transform designed for both the STFT [3] and the continuous
wavelet transform [4]. An implementation of these ideas was
proposed in [5] and consisted of integrating the transform in
frequency close to the ridge with applications to multicompo-
nent signal denoising [6].

Yet, these methods were designed for weakly frequency
modulated modes which is not relevant in many applications

(e.g. in radar or speech processing). This paper thus aims to
investigate how to extend these two mode retrieval methods
to strongly frequency modulated modes. To do so, we first
recall the approximation of the STFT of multicomponent sig-
nals under the weak modulation hypothesis, then we extend
the reconstruction methods to strong frequency modulations.
Finally, numerical simulations validate the proposed recon-
struction extensions, and underline the differences between
the reconstruction on the ridge and in its vicinity.

2. THE SHORT-TIME FOURIER TRANSFORM

Linear TF representations are particularly adapted to process
modulated signals. We define here the STFT for tempered
distributions and recall its first-order approximation that gen-
erates two different mode reconstruction methods.

2.1. Definitions

In the following, we denote by L1(R) the space of real inte-
grable functions, and by S(R) and S ′(R) the Schwartz class
and the space of tempered distributions, respectively. χX
stands for the indicator function of the set X , and z̄ is the
complex conjugate of z. Given a signal s ∈ L1(R), we define
its Fourier transform by:

ŝ(ξ) =

∫
R
s(t) e−2iπξt dt. (1)

Taking a window g ∈ S(R), the (modified) STFT of a signal
s ∈ S ′(R) is defined by

Vs(b, η) = s ∗ gη(b) with gη(t) = g(t)e2iπηt

=

∫
R
s(t)g(t− b)e−2iπη(t−b) dt (2)

where the convolution has to be understood in the distribu-
tional sense. If the window is the Gaussian function g(t) =

σ−
1
2 e−π

t2

σ2 then it is called the Gabor transform. The STFT
admits the following synthesis formula:

s(t) =
1

g(0)

∫
R
Vs(t, η) dη (3)
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Remark: equation (3) is true only when η 7→ Vs(b, η) is inte-
grable, which will always be the case in this paper.

Hereafter, we will assume that g (and thus ĝ) is real and
even, and that ĝ admits a global maximum at 0.

2.2. Monochromatic waves and Multicomponent Signals

A quasi-monochromatic signal is a modulated wave h(t) =
a(t)e2iπφ(t), where a′(t) and φ′′(t) are small compared to
φ′(t). The STFT of such a wave forms a ridge in the TF
plane, i.e. a curve with equation (b, φ′(b)) (see [7] for in-
stance). More precisely, we get the first-order approximation

Vh(b, η) = h(b)ĝ(η − φ′(b)) +O(
|a′(b)|
|φ′(b)|

,
|φ′′(b)|
|φ′(b)|

), (4)

whereO(X,Y ) is the Landau notation for a quantity of the or-
der of X and Y . A multicomponent signal can be modeled as
a sum of quasi-monochromatic waves: s(b) =

∑K
k=1 sk(b) =∑K

k=1 ak(b)e2iπφk(b), where |a′k(b)|, |φ′′k(b)| � φ′k(b). By
linearity of the STFT and if the components are separated,
i.e. |φ′k(b) − φ′l(b)| is high enough for k 6= l, the STFT of
s is not spoiled by mode interferences, and one is then able
to detect the ridge associated to each mode and then proceed
with mode reconstruction. Under this separation hypothesis
and without any loss of generality, one can focus on the re-
construction of a single mode h(t) = a(t)e2iπφ(t), for which
two types of reconstruction procedure are available. The first
one uses the value of the STFT on the ridge, i.e.

h(b) ≈ 1

ĝ(0)
Vh(b, φ′(b)). (5)

Hereafter, we denote this reconstruction method by RR (for
Ridge Reconstruction). Another way to reconstruct the modes
is to locally integrate in frequency the STFT, namely:

h(b) ≈ 1

g(0)

∫ φ′(b)+∆

φ′(b)−∆

Vh(b, η) dη, (6)

where ∆ is the radius of the support of ĝ. When ĝ is not com-
pactly supported (typically when g is the Gaussian window),
one can introduce a threshold ε and design ∆ so as to select
only the coefficients such that |Vh(b, η)| > ε|Vh(b, φ′(b))|.
As an illustration, for the Gaussian window we obtain

∆ =

√
− log ε

πσ2
. (7)

The major benefit of this integration is that when h is con-
taminated by noise, one can adjust ε and thus ∆ to the noise
level, improving the reconstruction by making it less sensi-
tive to the estimation of the instantaneous frequency φ′(b). A
formula of type (7) has been successfully used in [5, 6] in a
wavelet context, but ∆ was fixed whatever the noise level. We
denote this method by IR (for Integral Reconstruction).

However, many multicomponent signals contain strongly
frequency modulated modes (e.g. chirps used in radar pro-
cessing [8] or those associated to bat echolocations [9]), mak-
ing this first-order approximation of the phase irrelevant for
modes reconstruction. Figure 1 illustrates these difficulties,
displaying the magnitude of the Gabor transform and its val-
ues for a fixed time, both for a weakly and a strongly modu-
lated wave. For the former signal it is clear that equation (6) is
relevant because we extract most of the information but irrel-
evant for the latter. How to take into account strong frequency
modulations is the subject of the following sections.
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Fig. 1. Illustration of the IR method for two different signals.
(A): the magnitude of the Gabor transform of a weakly modu-
lated chirp, with σ = 0.05, (B): idem for a strongly modulated
one, (C): slice of the graph displayed in A for b = 0.5, along
with the selected coefficients (integrated part) when ε = 0.01,
(D): idem as (C) but for the graph displayed in (B).

3. A NEW MODEL BASED ON SECOND ORDER
APPROXIMATION

We consider here signals h(t) = a(t)e2iπφ(t) which behave
locally as linear chirps (i.e., waves with a linear instantaneous
frequency φ′(t)), so that the approximation of section 2 is no
longer valid. To estimate Vh(b, η) we now use the following
approximation instead:

h̃b(t) = h(b)e2iπ[φ′(t)(t−b)+ 1
2φ
′′(b)(t−b)2], (8)

that is we consider a second order approximation of the phase.
The following section studies the new approximation of the
STFT induced by replacing h by h̃b. Then, closed-form ex-
pression and reconstruction formulae are derived both for the
Gabor transform.
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3.1. Second order approximation of the phase and STFT

The linear chirp approximation leads to

Vh̃b(b, η) =

∫
R
h̃b(t)g(t− b)e−2iπη(t−b) dt

= h(b)

∫
R
g(t)eiπφ

′′(b)t2e−2iπ(η−φ′(b))t dt

= h(b)ĝcb(η − φ′(b)), (9)

where cb(t) = eiπφ
′′(b)t2 .

Remark: this is similar to equation (4), except that the window
g is modulated by the pure linear chirp cb.

3.2. A closed-form expression for the Gabor transform

To study the Gabor transform, we need to compute the Fourier
transform of a Gaussian modulated linear chirp.

Proposition 3.1. Consider the function u(t) = e−πzt
2

, where
z = reiθ with cos θ > 0, so that the function is integrable.
Then its Fourier transform is

û(ξ) = r−
1
2 e−i

θ
2 e−

π

reiθ
ξ2 . (10)

Proof. One can proceed as in the case when z is real: it suf-
fices to differentiate u and consider the Fourier transform of
the obtained differential equation (see Appendix A of [10] for
instance).

Theorem 3.1. The magnitude of the Gabor transform of h̃b
admits the following closed-form expression:

|Vh̃b(b, η)| = h(b)σ
1
2 (1 + σ4φ′′(b)2)−

1
4 e
−πσ

2(η−φ′(b))2

1+σ4φ′′(b)2 . (11)

This shows that the magnitude of the Gabor transform of
a linear chirp is a Gaussian function centered in η = φ′(b).
The difference with equation (4) lies in the magnitude and the
width of this Gaussian.

Proof. Equation (9) and Proposition 3.1 give

Vh̃b(b, η) = h(b)σ−
1
2 r−

1
2 e−i

θ
2 e−

π
r e
−iθ(η−φ′(b))2 ,(12)

with r = ( 1
σ4 +φ′′(b)2)

1
2 and θ = arctan(−φ′′(b)σ2). Using

the identity cos arctanx = 1√
1+x2

, one finally gets (11).

3.3. Reconstruction formulae based on second order ap-
proximation

Even if φ′′(b) is not negligible, Theorem 3.1 shows that a
modulated chirp creates a ridge centered in η = φ′(b). Thus,
for mode reconstruction one just needs to adapt methods RR
and IR taking into account equation (12). This leads to the
following new ridge reconstruction method (RR2):

h(b) ≈ Vh(b, φ′(b))
√
σr ei

θ
2 , (13)

where r and θ are those defined in equation (12).
Remark: this formula is also stated in [2], but based on a sta-
tionary phase approximation.

To design a reconstruction based on frequency integration
in that new context, one needs to compute the value ∆ such
that |Vh̃b(b, φ

′(b)−∆)| = ε|Vh̃b(b, φ
′(b))|, which gives

∆ =

√
−log(ε)(1 + σ4φ′′(b)2)

πσ2
. (14)

Compared to the first-order approximation (7), this amounts
to multiplying ∆ by a factor (1 + σ4φ′′(b)2)

1
2 . This method

will be denoted by IR2 hereafter.

4. NUMERICAL RESULTS

This section presents numerical experiments to validate the
reconstruction algorithms based on the second-order approx-
imation of the phase. For the sake of simplicity we only con-
sider monocomponent signals, but the proposed techniques
also apply to well separated multicomponent signals. We as-
sume first the true values for φ′ and φ′′ to be known to com-
pare the methods based on first and second order approxima-
tions of the phase, then we study the stability of RR2 and IR2
when φ′′ is perturbed. For the sake of reproducible research,
all codes used to create the figures of this paper can be down-
loaded from [11].

4.1. A comparative test

Let a family of signals depending on a parameter c be defined
for t ∈ [0, 1] by

hc(t) = e−10π(t−0.5)2e2iπ(250t+ 500
π2 c sin(πt)) (15)

We consider 1024 equi-spaced samples on [0, 1] and make c
vary between 0 and 1, so that supt |φ′′(t)| varies between 0
and 500. Note that when c 6= 0, hc is not a pure wave, but can
well be approximated by a linear chirp.

We now test the four methods described before on the sig-
nal hc, by displaying the SNR corresponding to the recon-
struction of hc as a function of c on Figure 2. We recall that
the SNR of the reconstructed signal ĥ from signal h writes

SNR(ĥ) = 20 log10

‖h‖2∥∥∥ĥ− h∥∥∥
2

. (16)

One observes that methods IR and IR2 on one hand, and RR
and RR2 on the other, give the same error when c is low. But
when c increases, taking φ′′ into account greatly improves the
results.

4.2. Parameter ε and noise

We then aim to emphasize the specifics of method IR2,
namely the influence of parameter ε. It is clear that in the

5360



0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60

parameter c

S
N

R

 

 

RR

IR

RR2

IR2

Fig. 2. SNR associated with the reconstruction of hc as a
function of c, for each method, the parameter ε being set to
0.01.

noise-free case, the results are all the better when ε is low.
However, for real signals contaminated by noise this is ques-
tionable. As an illustration of this, we display on Figure 3
the SNR after reconstruction (see equation (16)) for signal
h0.7, as a function of ε for four different noise levels and for
method IR2. We consider Gaussian white noise, and the noise
level is characterized by its SNR, computed from equation
(16) by replacing ĥ by the noisy signal. For each noise level,
the SNR after reconstruction increases slowly with ε until an
optimal value is reached, and then decreases rapidly. This
optimal value is strongly related to the noise level.
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Fig. 3. SNR of h0.7 as a function of ε, for the method IR2.
Different noise levels are considered with SNRs 44, 24 and 4.

4.3. A comparison between IR2 and RR2

When dealing with real signals, neither φ′(b) nor φ′′(b) are
perfectly estimated, which impacts on each reconstruction
method. However, as φ′′(b) only appears in the estimation of
the integration support, IR2 method appears to be less sen-
sitive to these estimates. To compare both methods, Figure
4 (A) displays the reconstruction of h0.7 as a function of the
noise level (measured by its SNR) when φ′′(t) is assumed
to be known. Methods RR2 and IR2 are investigated with
three different values of ε. The results show that method RR2
seems a bit more competitive when the noise level is high,

whereas IR2 with a low ε performs better with low noise.
To illustrate the sensitivity to φ′′ issue, we make the same
computations except that φ′′(t) is biased by a constant term
equal to 12 (see Figure 4 (B)). This simple example shows
that when φ′′ is not correctly estimated, RR2 reconstruction
is strongly affected but not IR2.
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Fig. 4. SNR of h0.7 as a function of the noise level (i.e., SNR
before denoising) for methods RR2 and IR2 with different
values of ε, (A): one uses the true value for φ′′, (B): one uses
a perturbed estimate.

5. CONCLUSION

This paper designed new methods for the analysis of strongly
modulated multicomponent signals with the STFT. It showed
that simple closed-form expressions can be derived for the
Gabor transform of linear chirps, leading to improved recon-
structions methods. Finally, it compared numerically ridge
reconstructions with the integral reconstructions on a quite
simple though informative signal, showing that the latter is
more sensitive to the ridge detection.

6. RELATION TO PRIOR WORK

This paper compared classical ridge reconstruction (RR) with
the integral (IR) approach. It showed that a simple 2nd-order
expansion of the phase leads to more efficients formulations
when the frequency modulation is high. Whereas RR2 was
already used in [2] (but derived through the stationary phase
approximation), the method IR2 is new. It is also the first
time that those two methods are compared when applied to
exemplar signals.
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