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ABSTRACT

This paper describes and supplements a recent re-examination
of linear time-frequency decomposition wherein the principle
of stationary phase is applied to the synthesis integral. An
inherent part of this time-frequency stationary phase approxi-
mation (TFSPA) is a test for the stationary phase condition it-
self. After outlining the development of the TFSPA, the main
contribution of this paper is an analysis of the test from the
perspective of classical detection theory. This leads to closed
form approximations that; (i) quantify performance in terms
of false alarm and detection probabilities; (ii) enable the de-
velopment of improved tests.

Index Terms— cochlear filters; stationary phase approx-
imation; ratio of complex Gaussian random variables.

1. INTRODUCTION

The paper contributes to a recent re-examination [1] of linear
time-frequency (TF) decomposition [2]. The motivation is the
resurgence of interest in analogue filter banks both as part of
a synthetic cochlea and as a means to provide power efficient
implementations of analysis filter banks [3]. The desire with
both is to extract salient features from the TF decomposition
using the limited functionality associated with analogue cir-
cuitry. The approach in [1] is to apply the principle of sta-
tionary phase (PSP) [4] to the TF synthesis integral through
a new interpretation of the location parameters. The PSP had
previously been applied to linear TF decomposition for both
analysis, [5] & [6], and synthesis [7], the latter leading to the
method of reassignment. The approach in [1] is to revisit [7]
and to fundamentally re-interpret it. There is no attempt to
either reassign [7] or relocate [8] components in the TF plane
because of the limited functionality mentioned above.

Necessary definitions and background material are pro-
vided in Section 2. Section 3 outlines the TF stationary phase
approximation (TFSA) introduced in [1] and, in particular,
gives the test for stationary phase points based on the time-
derivative and frequency-derivative filters associated with re-
assignment [7]. The main contribution of this paper is Section
4, where this test is analysed from the perspective of classi-
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cal detection theory to quantify its performance and develop
improved tests.

2. PRELIMINARIES

Consider a time-frequency analysis Xω(t) of a signal of in-
terest x(t) of the form:

Xω(t) = x(t) ∗ hω(t), {ω : ωmin < ω < ωmax} (1)

where ∗ denotes convolution and the impulse response of a
single filter in the analysis filter bank is hω(t) = βh(βt)eȷωt.
Each filter is formed using a prototype filter h(t) and a band-
width β that is itself a function of the centre frequency ω. The
frequency response of the analysis filter is related to the fre-
quency response of the prototype in a straight forward way,
i.e. Hω(Ω) = F[hω(t)] = H

(
Ω−ω
β

)
. where H(Ω) =

F[h(t)] =
∫∞
−∞h(t)e−ȷΩt dt. While the Gaussian pulse is

a common [2] and analytically convenient choice for time-
frequency analysis, the gamma tone [9] and gamma chirp
pulses [10] more closely model the cochlea in the ear. De-
tails of these standard prototype filters and their properties
are summarized in [1]. The prototype filters are normalised
such that H(0) = 1. A re-synthesis, x̂(t), of the signal of
interest is performed using filters matched to hω(t). Thus for
real signals

x̂(t) =
1

C
ℜ
{∫ 1

0

∫ ∞

−∞
Z(τ, µ) dτdµ

}
(2)

with integrand Z(τ, µ) , Xω(τ)h
∗
ω(τ − t) and where C is a

constant. The time variable t is suppressed in this definition
of the integrand to emphasize that the integration is respect to
τ and the filter bank variable µ. The latter lies in the the range
[0, 1] and is a monotonic function of ω. It provides a conve-
nient way of dealing with a number of possible filter bank
spacings. A value µ = 0 indicates the lower edge of the filter
bank and µ = 1 indicates the upper edge. The bandwidth of
the filter β is proportional to the derivative dω

dµ , i.e. β ∝ dω
dµ .

In the following ωmin is nominally the lowest frequency cov-
ered by the filter bank and ωmax is the maximum.
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3. TF STATIONARY PHASE APPROXIMATION

Following [1], it is convenient to define normalized time- and
frequency- derivatives of the integrand Z(τ, µ), i.e. Zτ ,
∂
∂τ Z(τ,µ)

Z(τ,µ) and Zµ ,
∂
∂ωZ(τ,µ) dω

dµ

Z(τ,µ) respectively, where

Zτ =
∂
∂τXω(τ)

Xω(τ)
+ β

ḣ∗(β{τ − t})
h∗(β{τ − t})

− ȷω (3)

and

Zµ =

{
∂
∂ωXω(τ)

Xω(τ)
+

∂
∂ωh

∗
ω(τ − t)

h∗
ω(τ − t)

}
dω

dµ
(4)

where

∂
∂ωh

∗
ω(τ − t)

h∗
ω(τ − t)

=
dβ

dω

{
1

β
+

ḣ∗(β{τ − t})
h∗(β{τ − t})

{τ − t}

}
− ȷ{τ − t}

where ḣ(t) = d
dth(t). Both Zτ and Zµ are additions of a sig-

nal dependent term, e.g.
∂
∂τ Xω(τ)

Xω(τ) , and a signal independent

term, e.g.
∂
∂τ h∗

ω(τ−t)

h∗
ω(τ−t) . The former is a function of the pair

(ω, τ) whereas the latter is a function of the pair (ω, τ − t).
Note that (ω, τ − t) are themselves parameters of the filter,
specifically, the frequency where the filter has maximum gain
ω and the delay τ − t between the input and output of the fil-
ter. In contrast to the method of re-assignment derived in [7],
the delay term {τ − t} is interpreted as the group delay

{τ − t} = g(ω) , − d
dΩ∠Hω(Ω)

∣∣
Ω=ω

(5)

of the analysis filter at ω, where the notation ∠H indicates the
argument of the complex variable H . Thus (3) and (4) can be
written as

Zτ =
∂
∂τXω(τ)

Xω(τ)
+ βη(ω)− ȷω (6)

and

Zµ

=

{
∂
∂ωXω(τ)

Xω(τ)
+

dβ

dω

{
1

β
+ η(ω)g(ω)

}
− ȷg(ω)

}
dω

dµ

(7)

respectively, where η(ω) = ḣ∗(β{g(ω)})
h∗(β{g(ω)}) . Then because

ℑ{η(ω)} = 0 for all three filter types, the time derivative of
the phase of the integrand is

Zτi = ℑ{Zτ} = ℑ

{
∂
∂τXω(τ)

Xω(τ)

}
− ω (8)

and the frequency derivative is

Zµi = ℑ{Zµ} =

{
ℑ

{
∂
∂ωXω(τ)

Xω(τ)

}
− g(ω)

}
dω

dµ
(9)

Time and frequency derivatives of the analysis integral (1)
are constructed using either the analysis filterbank itself as
in [7] or from the derivative filters ∂

∂τ hω(τ) and ∂
∂ωhω(τ)

respectively, c.f. [11]. Stationary phase points {(ωi, τi)}i are
solutions to Zτi = Zµi = 0. Locating stationary phase point
requires a grid search over ω for a bank of analogue filters or
over both ω and τ , for a discrete-time filter bank. Such a grid
search is not onerous since it is implicit in the implementation
of the analysis integral. With a grid search there is always the
risk of missing a pair (ωi, τi). This risk can be reduced by: (i)
defining a phase gradient vector

ϕ(τ, µ) , [Zτi Zµi]
T (10)

where the superscript T indicates matrix transpose; (ii) us-
ing the Euclidean norm of this vector to construct a test for
stationary phase points, i.e.

∥ϕ(τ, µ)∥ < C1 (11)

where the threshold C1 is a small positive real constant. The
Euclidean norm is used in [1] for analytic convenience when
dealing with deterministic signals.

In addition to finding stationary phase points, equations
(6) and (7) can also be used to test for phase-rate dominance
in the TF plane [1]. For phase-rate dominance the inequality

p(τ, µ)

∥a(τ, µ)∥
> C2 (12)

must be satisfied, where the amplitude gradient vector is
a(τ, µ) , [ℜ{Zτ} ℜ{Zµ}]T and the threshold C2 is a posi-
tive real constant greater than or equal to one. The projection
term

p(τ, µ) =
|ϕT (τ, µ)Wa(τ, µ)|

∥a(τ, µ)∥
(13)

is formed from the sum of the projection of the phase rate
vector in the direction of the normalised amplitude rate, i.e.
ϕTa/∥a∥, plus the projection in the orthogonal direction, i.e.
ϕT
[

0 1
−1 0

]
a/∥a∥ and hence W =

[
1 1
−1 1

]
. Thus the PSP

divides the time frequency plane into two regions: a region S0

where (12) is satisfied and the rest of the TF plane S̃0 where
it is not.

Given the stationary phase points {(µi, τi)}i, the station-
ary phase approximation is invoked by replacing (2) by:

x̂(t) ≈ 1

C
ℜ
{∫∫

S

Xω(τ)h
∗
ω(τ − t) dµdτ

}
(14)

where S is a subset of the TF plane defined as S = {
∪

i Si}∪
S̃0, Si is the neighbourhood of the ith stationary phase point
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Fig. 1. Null hypothesis, gammatone filter: (a) fτ (Zτi|H0)
from simulation in blue and using (16) in red; (b) empirical
joint distribution.

such that (µi, τi) ∈ Si and
∪

i Si contains all points in the
TF plane that satisfy (11). Together the analysis steps of (1),
(6) & (7), the selection inequalities (11) & (12) and the syn-
thesis equation (14) form a time-frequency stationary phase
approximation (TFSPA).

4. DETECTING STATIONARY PHASE POINTS

Equation (11) is a binary hypothesis test. Under the null hy-
pothesis, H0, a signal is not present. Under the alternative
hypothesis, H1, a signal that induces a stationary phase point
is present. Specifically consider:

H0 : x(t) = w(t)

H1 : x(t) = eȷωt + w(t)

where w(t) is zero-mean complex Gaussian white random
process with variance σ2

w. The performance of the test is
characterised by the probability of false alarm (type I er-
ror), PFA(||ϕ|| < C1|H0), and the probability of detection,
PD(||ϕ|| < C1|H1). These probabilities can be bounded by

PFA ≤
∫ C1

−C1

∫ C1

−C1

fτ,µ(Zτi, Zµi|H0)dZτidZµi (15)

where fτ,µ(Zτi, Zµi|H0) is the joint PDF of (Zτi, Zµi) con-
ditioned on the null hypothesis. Further simplification fol-
lows if Zτi and Zµi are independent in which case the prob-
ability can be expressed as products of terms of the form∫ C1

−C1
fτ (Zτi|H0)dZτi, where fτ (Zτi|H0) is the PDF of Zτi

conditioned on H0.

Under the null hypothesis, Xω(τ), ∂
∂ωXω(τ) and ∂

∂τXω(τ)
are zero-mean complex Gaussian random variables whose
variances and cross-correlations can be evaluated using the
filter responses hω(τ), ∂

∂ωhω(τ) and ∂
∂τ hω(τ) and the input

noise variance σ2
w. Equations (8) and (9) appear challeng-

ing as they involve ratio’s of Gaussian random variables.
Fortunately the recent result of [12] addresses this directly.
Consider z, which is the ratio of two jointly-Gaussian zero-
mean complex random variables a and b with variances σ2

a

and σ2
b respectively and with cross correlation coefficient

ρ = ρr + ȷρi =
E[ab∗]
σaσb

, where z = a
b = zr + ȷzi. In [12] a

closed form expression for the PDF of the joint distribution
fa/b(zr, zi) of zr and zi was derived. The PDF of the imagi-
nary part, required here, is developed by integrating over the
whole real line, i.e. f(zi) =

∫∞
−∞ fa/b(zr, zi)dzr. Using a

standard result for definite integrals from [13] pg. 250, gives

f(zi) =

σ2
a

2σ2
b
{1− |ρ|2}{{

zi +
σa

σb
ρi

}2

+
σ2
a

σ2
b
{1− |ρ|2}

} 3
2

(16)

This is a symmetrical distribution with a peak at, and hence a
mean of, −ρi

σb

σa
. The spread of the distribution is indicated

by σa

σb

√
1− |ρ|2. Further an expression for the CDF, F (zi) =∫ zi

−∞ f(λ)dλ, can be obtained using [13] pg. 162.

F (zi) =

1
2

{
zi +

σa

σb
ρi

}
{{

zi +
σa

σb
ρi

}2

+
σ2
a

σ2
b
{1− |ρ|2}

} 1
2

+
1

2
(17)

Using (16) exact expressions can be obtained for fτ (Zτi|H0)
and fµ(Zµi|H0). One such result for the former is illus-
trated in Fig.1(a). The vertical axis is a logarithmic scale
to highlight the non-Gaussian nature of the distribution and
the heavy tails. While the pursuit of an analytic expression
for the joint distribution fτ,µ(Zτi, Zµi|H0) is the subject of
ongoing work, experimental evidence such as the empirical
distribution of Fig.1(b) strongly suggests that Zτi and Zµi are
independent for Gaussian and gammatone filter banks but not
for gammachirp where they are strongly correlated. An ap-
proximate theoretical upper bounds on PFA can be obtained
by applying the independence assumption to (15) and then us-
ing (17) to evaluate each of the two resultant product terms.
An example of the result is illustrated in Fig.2 which com-
pares the theoretical result with the false alarm rate measured
in simulation for a cochlea-spaced gammatone filter bank [1].

Under H1, (8) becomes:

Zτi = ℑ
{
ȷω + nτ (τ)e

−ȷωτ

1 + n(τ)e−ȷωτ

}
− ω

where n(τ) ∼ CN(0, σ2
n) is the noise component at the out-

put of the analysis filter hω(t) and nτ (τ) ∼ CN(0, σ2
τ ) is
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Fig. 2. Probability of false alarm for cochlea-spaced gamma-
tone filter bank with C1 = 10.

the noise component at the output of the time derivative filter
∂
∂thω(t). Since n(τ) and nτ (τ) are the outputs of filters cen-
tered ar ω rad/s, the action of the e−ȷωτ term is to shift their
power spectra to zero rad/s and hence,

Zτi = ℑ
{
ȷω + nτ (τ)

1 + n(τ)

}
− ω

where the noise processes are suitably re-defined. These noise
processes are jointly complex Gaussian with correlation coef-
ficient ρτ . Assuming that the signal power is much greater
than the noise power at the output of analysis filter i.e. σ2

n ≪
1 and |1 + n(τ)| ≈ 1 leads to the following approximation

Zτi ≈ ℑ{nτ (τ)}+ ωℜ{n(τ)}+ ℑ{nτ (τ)n
∗(τ)} (18)

While the first 2 terms on the RHS are Gaussian random vari-
ables , the third is not. However both the mean Z̄τi and the
variance σ2

Zτ of Zτi in (18) can be evaluated exactly (the lat-
ter using Isserlis’s theorem [14]) i.e.: Z̄τi = ℑ{ρτ}σnστ and

σ2
Zτ =

σ2
τ

2
+ ω2σ

2
n

2
− ωℑ{ρτ}στσn + smaller terms.

This in turn leads to a Gaussian approximation to the condi-
tional density based on these parameters, i.e.:

fτ (Zτi|H1) ≈ N(Zτi; Z̄τi, σ
2
Zτ ). (19)

The quality of this approximation is illustrated in Fig. 3(a).
Similar arguments follow for Zµi (9) and, as with the null hy-
pothesis, experimental evidence such as Fig. 3(b) suggests
that Zτi and Zµi are independent for Gaussian and gamma-
tone filters.

As well as characterising the performance of (11), the ex-
pression presented in this section give insight into developing
better detectors. For example, the optimal decision boundary
for the binary test is defined as the solution to;

fτ,µ(Zτi, Zµi|H1) = fτ,µ(Zτi, Zµi|H0)

Applying the independence assumption leads to separate so-
lutions: (i) fτ (Zτi|H1) = fτ (Zτi|H0) (whose solution can
be observed in Fig. 3(a) at the points where the red and black
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Fig. 3. Alternative hypothesis, gammatone filter, σ2
n =

−19 dB: (a) fτ (Zτi|H1) simulated in blue; fτ (Zτi|H1) the-
ory (19) in black;fτ (Zτi|H0) theory using (16) in red; (b)
empirical joint distribution

lines intersect); (ii) fµ(Zµi|H1) = fµ(Zµi|H0). While these
equations can be be solved numerically, simpler approxima-
tions are also of interest for ease of implementation. If, as
is evident from Fig. 3(a), the spread of fτ (Zτi|H0) is much
larger than the r.m.s. of fτ (Zτi|H1), the former is almost
constant over the domain of the latter. It is convenient to ap-
proximate fτ (Zτi|H0) with its peak value which is readily
obtained from (16). This leads to the following approxima-
tion to the optimal decision boundary.

{Zτi − Z̄τi}2 = σ2
Zτ ln

(
στ

σn

√
1− |ρτ |2√
π
2σZτ

)

5. CONCLUSIONS

The test for stationary phase points was examined under both
the null hypothesis (H0), where Gaussian noise alone was
present, and the alternative hypothesis (H1), where a constant
frequency phasor was added to the noise. For H0, closed form
expressions for the distributions of the individual components
of the phase gradient vector were obtained. For gammatone
filter banks, empirical evidence suggests that these compo-
nents are independent of each other and the derived expres-
sions were shown to predict both the non-Gaussian form of
the distributions and the false alarm rate. For H1, the distribu-
tion of the individual components were shown to be approx-
imately Gaussian and expressions for the mean and variance
were derived to facilitate calculation of the probability of de-
tection. Using expressions from both H0 and H1 a simple ap-
proximation to the optimal decision boundary was obtained.
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