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ABSTRACT

For a given time or frequency spread, one can always find continuous-

time signals, which achieve the Heisenberg uncertainty principle

bound. This is known, however, not to be the case for discrete-time

sequences; only widely spread sequences asymptotically achieve

this bound. We provide a constructive method for designing se-

quences that are maximally compact in time for a given frequency

spread. By formulating the problem as a semidefinite program, we

show that maximally compact sequences do not achieve the classic

Heisenberg bound. We further provide analytic lower bounds on the

time-frequency spread of such signals.

Index Terms— Heisenberg Uncertainty Principle, Compact Se-

quences, Harmonic Analysis, Filter Design, Semidefinite Program-

ming

1. INTRODUCTION

Consider the common problem of filter design; we are asked to de-

sign a filter that is compact both in time and frequency domains.

To this end, the notion of compactness and spread must be defined

correctly. These notions are very well defined and established for

continuous-time signals [1, 2]. For a continuous-time signal, we can

define the time and frequency characteristics of a signal as in Table

1.

The Heisenberg uncertainty principle [1] states that continuous-

time signals cannot be arbitrarily compact in both domains. Specifi-

cally,

For any x(t) ∈ L2(R),

ηc = ∆2
t ∆

2
ωc
≥ 1

4
, (1)

where the lower bound is achieved for Gaussian signals of the form

x(t) = γe−αt
2

, α > 0. The subscript c stands for continuous-time

definitions. We call ηc the time-frequency spread of x.

One can easily see the connection of these definitions with the

mean and variance of a probability distribution function |x(t)|2/ ‖x‖2
(under some smoothness conditions for x(t)). Although the contin-

uous Heisenberg uncertainty principle is widely used in theory, in

practice we mostly work with discrete-time signals (e.g. filters and

wavelets). Thus, equivalent definitions for discrete-time sequences

are needed in signal processing.
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1.1. Definitions

An obvious and intuitive extension of the definitions in Table 1 for

discrete-time signals is presented in Table 2, where

X(ejω) =
∑

n∈Z

xne
−jωn ω ∈ R , (2)

is the discrete-time Fourier transform (DTFT) of xn.

Using the definitions in Table 2, we can also state the Heisenberg

uncertainty principle for discrete-time signals as [2]

For a discrete-time sequence xn ∈ ℓ2(Z) with X(ejπ) = 0,

ηℓ = ∆2
n∆

2
ωℓ
>

1

4
, (3)

where the subscript ℓ stands for linear in reference to the definition

of the frequency spread. Note the extra assumption on the Fourier

transform of the signal for (3) to hold. This assumption is necessary

for the result to hold.

Example: Take xn = δn + 4δn−1 + 2δn−2. The Fourier

transform of xn is shown in Figure 1. Observe that |X(ejπ)| =
0.09 6= 0, which violates the condition X(ejπ) = 0. The linear

time-frequency spread of this signal according to Table 2 is ηℓ =
0.239 < 1/4.
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Fig. 1. A signal that violates X(ejπ) = 0 and does not satisfy the

linear Heisenberg uncertainty principle (ηℓ = 0.239 < 1
4

).

In addition to the restriction on the Heisenberg uncertainty prin-

ciple, the definitions in Table 2 do not capture the periodic nature

of X(ejω) for the frequency center and spread. To overcome these

shortcomings, we can adopt definitions for circular moments widely

used in quantum mechanics [3] and directional statistics [4].

For a sequence xn, n ∈ Z, with a 2π periodic DTFT, X(ejω)
as in (2), the first trigonometric moment is defined as [5, 6]

τ (x) =
1

2π ‖x‖2
∫ π

−π

ejω|X(ejω)|2dω . (4)

The first trigonometric moment is originally defined for proba-

bility distributions on a circle. With proper normalization, this defi-

nition applies also to periodic functions.
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domain center spread

time µt =
1

‖x‖2

∫

t∈R
t|x(t)|2dt ∆2

t =
1

‖x‖2

∫

t∈R
(t− µt)2|x(t)|2dt

frequency µωc = 1
2π‖x‖2

∫

ω∈R
ω|X(ω)|2dω ∆2

ωc
= 1

2π‖x‖2

∫

ω∈R
(ω − µω)2|X(ω)|2dω

Table 1. Time and frequency centers and spreads for a continuous time signal x(t).

domain center spread

time µn = 1
‖x‖2

∑

n∈Z
n|xn|2 ∆2

n = 1
‖x‖2

∑

n∈Z
(n− µn)2|xn|2

frequency µωℓ
= 1

2π‖x‖2

∫ π

−π
ω|X(ejω)|2dω ∆2

ωℓ
= 1

2π‖x‖2

∫ π

−π
(ω − µω)2|X(ejω)|2dω

Table 2. Time and frequency centers and spreads for a discrete time signal xn as extensions of Table 1 [2].

Using (4), the periodic frequency spread is defined as [3]

∆2
ωp

=
1− |τ (x)|2
|τ (x)|2 =

∣

∣

∣

∣

‖x‖2
∑

n∈Z
xn x∗

n+1

∣

∣

∣

∣

2

− 1 . (5)

The definition of ∆2
n remains unchanged as in Table 2. These

definitions are summarized in Table 3.

1.2. Contributions

In this paper, using the definitions in Table 3, we revisit the Heisen-

berg uncertainty principle for discrete-time signals.

We address the fundamental yet unanswered question : If some-

one asks us to design a discrete filter with a certain frequency spread

(∆2
ωp

fixed), can we return the sequence with minimal time spread

∆2
n? In other words, the problem is to find the solution to

∆2
n,opt = minimize

xn
∆2
n

subject to ∆2
ωp

= fixed .
(6)

We call the solution of (6) a maximally compact sequence. Framing

the design of maximally compact sequences as an optimization prob-

lem, we show that in contrary to the continuous case, it is not pos-

sible to reach a constant time-frequency lower bound for arbitrary

time or frequency spreads. We further develop a simple optimiza-

tion framework to find maximally compact sequences in the time

domain for a given frequency spread. In other words, we provide in

a constructive and numerical way, a sharp uncertainty principle for

sequences.

1.3. Related Work

The classic uncertainty principle [1] assumes continuous-

time/continuous-frequency signals. Several works in the signal

processing community also address the discrete-time/discrete-

frequency case [7–9]. Our work bridges between these two cases by

considering the discrete-time/continuous-frequency regime.

Note that not all studies about uncertainty principle concern the

notion of spread. For example, the authors in [8] propose the un-

certainty bound on the information content of signals (entropy) and

[9] provides a bound on the non-zero coefficients of discrete-time

sequences and their discrete Fourier transforms.

The discrete-time/continuous-frequency scenario has been re-

cently encountered in many practical applications in signal process-

ing. Examples include uncertainty principle on graphs [10] and on

spheres [11]. Initial studies on the periodic frequency spread were

undertaken by [3] and [12]. The most comprehensive work on the

uncertainty relations for discrete sequences is found in [6]. The au-

thors show that 1/4 is a lower-bound on the time-frequency spread,

which can only be achieved asymptotically as the sequence spreads

in time.

This problem has some analogy with the design of Slepian’s Dis-

crete Prolate Spheroidal Sequences (DPSS’s) [13]. However, in con-

trary to these sequences, we do not impose any constraints on the

bandwidth of the sequence in the frequency domain; instead, we use

the notion of variance as a measure of concentration in time and fre-

quency1.

1.4. Organization

The organization of the paper is as follows. In Section 2, we visit the

Heisenberg uncertainty principle for discrete sequences. In Section

3, we identify some properties of maximally compact sequences.

Then in Section 4, we show how to use a semidefinite relaxation

to solve the problem (6). In Section 5, we provide an analytic lower

bound on the solution of the optimization problem and finally in Sec-

tion 6, we present some experimental results for constructing maxi-

mally compact sequences.

2. HEISENBERG UNCERTAINTY PRINCIPLE FOR

PERIODIC SPECTRUMS

Although the definition of the frequency spread in Table 3 is less in-

tuitive, Breitenberger proves in [3] that for a concentrated periodic

distribution, ∆2
ωp

in (5) converges to the linear variance ∆2
ωℓ

. Also

viewing frequency as a phase derivative, Torresani gives a nice jus-

tification of this formulation in [14].

The definitions in Table 3 take into account the periodic nature

of the Fourier transform of the signal and in this sense are optimal

for characterizing the frequency spread of discrete-time sequences.

Using the definitions in Table 3, the periodic Heisenberg uncer-

tainty principle reads as follows [3]:

1The authors thank the anonymous reviewer for suggesting the connection
with the DPSS’s.
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domain center spread

time µn = 1
‖x‖2

∑

n∈Z
n|xn|2 ∆2

n = 1
‖x‖2

∑

n∈Z
(n− µn)2|xn|2

frequency µωp = arg[
∫ π

−π
ejω|X(ejω)|2dω] ∆2

ωp
=
∣

∣

∣

‖x‖2∑
n∈Z

xn x
∗

n+1

∣

∣

∣

2

− 1

Table 3. Time and frequency centers and spreads for a discrete time signal xn using circular moments.

For a discrete-time sequence xn ∈ ℓ2(Z), with ‖xn‖0 > 1,

ηp = ∆2
n∆

2
ωp
>

1

4
. (7)

This principle is used mostly for periodic signals with discrete

Fourier series coefficients. Here, we use the duality of the Fourier

transform to define them for discrete-time sequences and their

DTFTs. It is proved in [5] that the lower bound cannot be achieved

in general. The authors propose a framework for finding functions

which reach asymptotically the bound. However, this asymptotic

regime is reached for very large time spreads and frequency spreads

vanishing to 0, which seriously reduces its range of application2.

3. PROPERTIES OF MAXIMALLY COMPACT

SEQUENCES

So far, we have considered arbitrary complex sequences and their

DTFT spectrum. In the following, we establish two lemmas that

make the search for maximally compact sequences more tractable.

Lemma 1. Maximally compact sequences are generalized linear-

phase sequences derived from real-valued, positive maximally com-

pact sequences; i.e. xn is a maximally compact sequence only if

∃ ϕ,ψ ∈ [0, 2π[ such that xn = |xn|e−j(ϕn+ψ) , (8)

where |x| is a maximally compact sequence.

Proof. For the proof, we refer the reader to the supplementary ma-

terial provided in [15].

Consider also the shift operator

xn+ν
DTFT←→ ejωνX(ejω) , ν ∈ R, (9)

whose principal effect is to shift the time centre of a sequence

µn(xn+ν) = µn(x) + ν. (10)

Notice that ν might not be integer, in which case xn−ν is a short-

hand for sinc resampling on a grid shifted by ν in the time-domain.

Lemma 2. If x is a maximally compact sequence, then xn−µn(x) is

also maximally compact.

Proof. The proof is provided in [15].

Lemmas 1 and 2 greatly reduce the complexity of the problem,

and from here on we only consider—without loss of generality—

real, positive sequences x, with µn(x) = 0 and ‖x‖2 = 1. It

also shows that the uncertainty principle for sequences will retain

a probabilistic interpretation similar to the Heisenberg uncertainty

for functions.

2In this asymptotic regime, the sequence and its spectrum share many
properties with their continuous-time counterparts. So, the similarity with
the continuous-time Heisenberg uncertainty principle is not surprising.

4. REFORMULATION AS A QCQP

If we are given a fixed frequency spread ∆2
ωp

= σ2, by using Lem-

mas 1 and 2, we can write problem (6) for finding maximally com-

pact sequences in the time domain as

∆2
n,opt = minimize

xn

∑

n∈Z

n2x2
n

subject to
∑

n∈Z

xnxn+1 =
1√

1 + σ2
,

∑

n∈Z

x2
n = 1.

(11)

Note that the constraint comes from the definition of ∆2
ωp

in

Table 3. We can rewrite (11) in a matrix form as a quadratically

constrained quadratic program (QCQP) [16]

minimize
x

x
T
Ax

subject to x
T
Bx = α ,

x
T
x = 1 ,

where

A =

























. . .

22 0
12

0
12

0 22

. . .

























, B =

















. . . 0
1
2

0 1
2

1
2

0 1
2

1
2

0 1
2

0
. . .

















,

and α = 1/
√
1 + σ2. This problem can be further reformulated as

follows:
minimize

x

tr(Axx
T )

subject to tr(Bxx
T ) = α

tr(xxT ) = 1 .

Replacing xx
T by X , we can write equivalently

minimize
X

tr(AX)

subject to tr(BX) = α

tr(X) = 1

X � 0, rank(X) = 1 .

(12)

We can relax the above formulation to reach the semidefinite pro-

gram

minimize
X

tr(AX)

subject to tr(BX) = α

tr(X) = 1, X � 0 .

(13)
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Lemma 3. The semidefinite relaxation (SDR) in (13) is tight.

Proof. Shapiro and then Barnivok and Pataki [17–20] show that if

the SDP in (12) is feasible, then

rank(Xopt) ≤ ⌊(
√
8m+ 1− 1)/2⌋ , (14)

where m is the number of constraints of the SDP and X
opt is its

optimal solution. For our semidefinite program in (13), m = 2.

Thus, (14) implies that the solution has rank 1. Using this fact, one

can see that the semidefinite relaxation is in fact tight. Note that from

the nature of the problem, (12) is clearly feasible; We can always find

a periodic signal in the Fourier domain with a unit norm and a desired

frequency spread, although not having an optimal time spread.

The SDP in (13) can be solved to any precision by using the

existing approaches in the optimization literature; for example using

the cvx software package [21].

5. ANALYTIC LOWER BOUND

Note that by solving (13), one can constructively produce maximally

compact sequences upto machine precision. As shown in Section 6,

these sequences do not reach the Heisenberg bound. In this section

we provide an analytic lower bound on the solution of (13).

The dual of SDR (13) is [16]

maximize
λ1,λ2

αλ1 + λ2

subject to A− λ1 B − λ2 I � 0
(15)

Lemma 4. For the primal problem (13) and the dual (15), strong

duality holds.

Proof. We refer the reader to [15] for the proof.

Thus, for finding the time-frequency spread of maximally com-

pact sequences, solving the dual problem suffices. In the following

theorem we show that the solution to the dual problem (and thus the

primal) is bounded from below.

Theorem 1. If xn is maximally compact for a given ∆2
ωp

= σ2,

then

ηp = ∆2
n∆

2
ωp
≥ σ2

(

1−
√

σ2

1 + σ2

)

. (16)

Proof. The detailed proof is provided in [15].

This is a fundamental result showing that although the Heisen-

berg uncertainty principle provides a lower bound for the time-

frequency spread of the signal, it cannot be achieved for any given

frequency (or equivalently time) spread.

6. EXPERIMENTAL RESULTS

In order to evaluate the results of this paper, we perform simula-

tions to find the optimally compact sequences for a given frequency

spread. We solve the semidefinite program (13) using the cvx pack-

age.

Figure 2 shows the Fourier transform of the resulting sequences

for different input values of ∆2
ωp

. Note that we can find x
opt from

X
opt with a simple singular value decomposition, as we have shown

that Xopt has rank 1.

Further, Figure 3 shows the time-frequency spread, ηp of the

resulting signals for given values of ∆2
ωp

. One can observe that, in
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Fig. 2. For a fixed frequency spread ∆2
ωp

, the spectrum of the so-

lutions to the SDR problem are at numerical precision similar to

wrapped-gaussian kernels.
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∆
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∆
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Fig. 3. Achievability of the discrete time-frequency spread ηp condi-

tionned on the frequency spread. The analytic lower bound becomes

tight as the frequency spread increases.

contrary to continuous-time signals, maximally compact sequences

do not reach the Heisenberg lower bound. Also, the analytic bound

in Theorem 1 converges to 1/2 as ∆2
ωp

grows, and its union with

Heisenberg lower bound crudely delineates the achievable time-

frequency spread region.

7. CONCLUSION

Using the terminology from [3], we introduce a constructive method

for designing maximally compact sequences with a given frequency

(or equivalently time) spread. We provide an analytical lower bound

that shows that the time-frequency spread of narrow in time se-

quences is bounded from below by 1/2 and not just 1/4.

The maximally compact sequences constructed with the pre-

sented method provide a sharp uncertainty principle for sequences.

All the results presented in this article are reproducible. Codes for generating the

figures are available at http://rr.epfl.ch.
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